Document Detail


Oxygen consumption, oxygen cost, heart rate, and perceived effort during split-belt treadmill walking in young healthy adults.
MedLine Citation:
PMID:  23011122     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
During split-belt treadmill walking the speed of the treadmill under one limb is faster than the belt under the contralateral limb. This unique intervention has shown evidence of acutely improving gait impairments in individuals with neurologic impairment such as stroke and Parkinson's disease. However, oxygen use, heart rate and perceived effort associated with split-belt treadmill walking are unknown and may limit the utility of this locomotor intervention. To better understand the intensity of this new intervention, this study was undertaken to examine the oxygen consumption, oxygen cost, heart rate, and rating of perceived exertion associated with split-belt treadmill walking in young healthy adults. Fifteen participants completed three sessions of treadmill walking: slow speed with belts tied, fast speed with belts tied, and split-belt walking with one leg walking at the fast speed and one leg walking at the slow speed. Oxygen consumption, heart rate, and rating of perceived exertion were collected during each walking condition and oxygen cost was calculated. Results revealed that oxygen consumption, heart rate, and perceived effort associated with split-belt walking were higher than slow treadmill walking, but only oxygen consumption was significantly lower during both split-belt walking than fast treadmill walking. Oxygen cost associated with slow treadmill walking was significantly higher than fast treadmill walking. These findings have implications for using split-belt treadmill walking as a rehabilitation tool as the cost associated with split-belt treadmill walking may not be higher or potentially more detrimental than that associated with previously used treadmill training rehabilitation strategies.
Authors:
Jaimie A Roper; Elizabeth L Stegemöller; Mark D Tillman; Chris J Hass
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-8-30
Journal Detail:
Title:  European journal of applied physiology     Volume:  -     ISSN:  1439-6327     ISO Abbreviation:  Eur. J. Appl. Physiol.     Publication Date:  2012 Aug 
Date Detail:
Created Date:  2012-9-26     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100954790     Medline TA:  Eur J Appl Physiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
Department of Applied Physiology and Kinesiology, University of Florida, 122 Florida Gym, PO Box 118205, Gainesville, FL, 32611-8205, USA, jaimier@ufl.edu.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Spark erosion: a high production rate method for producing Bi(0.5)Sb(1.5)Te(3) nanoparticles with en...
Next Document:  Influence of muscle strength to weight ratio on functional task performance.