Document Detail

Optical and structural properties of nanostructured CuIn0.7Ga0.3(Se(1-x)Te(x))2 chalcopyrite thin films--effect of stoichiometry and annealing.
MedLine Citation:
PMID:  24757973     Owner:  NLM     Status:  In-Process    
The aim of this work was to study the dependence of the optical, structural and morphological properties of CuIn0.7Ga0.3(Se(1-x)Te(x))2 (briefly CIGSeTe) thin films for two different stoichiometries (for x = 0.2 and 0.8). The films have been deposited onto soda lime glass (SLG) substrates by the e-beam evaporation technique. The films showed high absorption and revealed optical band gaps ranging from 1.17 eV to 1.06 eV for x = 0 with highest annealing temperatute at 525 degrees C and 1.12 eV to 1.02 eV for x = 0.8 and with highest annealed temperature at 600 degrees C. These results were correlated with the microstructural analysis by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-ray diffractometry (XRD). The linear dependence of the lattice parameters as a function of Se and Te contents was examined. X-ray diffraction analyses showed that the films had the single phase chalcopyrite structure. The lattice parameters (a and c) varied linearly with the increase in Te content x from x = 0.2 to x = 0.8. The peak correspondng to the (1 1 2) plane orientation of the films increased with annealing process. Also, SEM images showed that both the grains size and the RMS (root mean square) values increased with annealing and higher Te amount that caused grains aggregation. The relative 600 degrees C elemental composition present in the deposited CIGS films have been measured by using energy dispersive X-ray analysis (EDX).
Songül Fiat; Ismail Polat; Emin Bacaksiz; Güven Cankaya; Panagiota Koralli; Demitrios E Manolakos; Michael Kompitsas
Related Documents :
23130843 - Nanoscale-triboelectric-effect enabled energy conversion for sustainably powering of po...
24986103 - Seed-assisted synthesis of pd@au core-shell nanotetrapods and their optical and catalyt...
25089953 - Electronic cigarettes: a review of safety and clinical issues.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Journal of nanoscience and nanotechnology     Volume:  14     ISSN:  1533-4880     ISO Abbreviation:  J Nanosci Nanotechnol     Publication Date:  2014 Jul 
Date Detail:
Created Date:  2014-04-24     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101088195     Medline TA:  J Nanosci Nanotechnol     Country:  United States    
Other Details:
Languages:  eng     Pagination:  5002-10     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Band gap engineered P3HT/CdPbS composites for utilization of low energy photons.
Next Document:  In-situ preparation and characterization of acid functionalized single walled carbon nanotubes with ...