Document Detail

Opposing effects of ATP and adenosine on barrier function of rat coronary microvasculature.
MedLine Citation:
PMID:  22266063     Owner:  NLM     Status:  Publisher    
ATP can differentially affect the micro- and macrovascular endothelial barrier. It has been shown that it can both increase and/or decrease macromolecule permeability of microvascular endothelial cells and microvessels, in vivo. We hypothesised that the barrier stabilising effect is mediated by ATP itself via P2 receptors, while barrier-disrupting effect is mediated by its metabolite adenosine via adenosine receptors. The effects of ATP, ADP, AMP and adenosine on barrier function were studied in cultured rat coronary microvascular endothelial monolayers (RCEC) in vitro, as well as in rat mesentery vessels, and in rat hearts in vivo. ATP and ADP showed a biphasic effect on permeability of RCEC monolayers with a reduction followed by a later increase in albumin permeability. The permeability decreasing effect of ATP was enhanced by ecto-nucleotidase inhibitor ARL67156 while permeability increasing effect was enhanced by apyrase, an extracellular ecto-nucleotidase. Moreover, the permeability increasing effect was abrogated by adenosine receptor antagonists, 8-phenyltheophylline (8-PT) and DMPX. Adenosine and adenosine receptor agonists 5'-(N-ethylcarboxamido)-adenosine (NECA), CGS21680, and R-PIA enhanced albumin permeability which was antagonised by 8-PT, A(1), and A(2) but not by A(3) receptor antagonists. Likewise, immunofluorescence microscopy of VE-cadherin and actin showed that NECA induces a disturbance of intercellular junctions. Pre-incubation of ATP antagonised the effects of NECA on permeability, actin cytoskeleton and intercellular junctions. Similar effects of the applied substances were observed in rat mesentery artery by determining the vascular leakage using intravital microscopy as well as in rat hearts by assessing myocardial water contents in vivo. In conclusion, the study demonstrates that in RCEC, ATP, ADP, and its metabolite adenosine play opposing roles on endothelial barrier function.
Dursun Gündüz; Muhammad Aslam; Uwe Krieger; Lutz Becker; Mathias Grebe; Muhammad Arshad; Daniel G Sedding; Frauke V Härtel; Yaser Abdallah; Hans Michael Piper; Reinhard K Voss; Thomas Noll
Related Documents :
14643383 - Role of nr2b-type nmda receptors in selective neurodegeneration in huntington disease.
15996483 - Muscarinic acetylcholine receptor activation enhances hippocampal neuron excitability a...
12036423 - Anti-emetics in development.
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-1-13
Journal Detail:
Title:  Journal of molecular and cellular cardiology     Volume:  -     ISSN:  1095-8584     ISO Abbreviation:  -     Publication Date:  2012 Jan 
Date Detail:
Created Date:  2012-1-23     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0262322     Medline TA:  J Mol Cell Cardiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012. Published by Elsevier Ltd.
Zentrum für Innere Medizin, Abteilung Kardiologie/Angiologie, Universitätsklinikum Gießen und Marburg GmbH, Germany.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  First long-term experience with the orphan drug rufinamide in children with myoclonic-astatic epilep...
Next Document:  Performance of two 17 locus forensic identification STR kits-Applied Biosystems's AmpF?STR(®) NGMSE...