Document Detail

Observation of an Intermediate Band in Sn-doped Chalcopyrites with Wide-spectrum Solar Response.
Jump to Full Text
MedLine Citation:
PMID:  23412565     Owner:  NLM     Status:  In-Data-Review    
Nanostrcutured particles and polycrystalline thin films of Sn-doped chalcopyrite are synthesized by newly-developed methods. Surprisingly, Sn doping introduces a narrow partially filled intermediate band (IB) located ~1.7 eV (CuGaS(2)) and ~0.8 eV (CuInS(2)) above the valance band maximum in the forbidden band gap. Diffuse reflection spectra and photoluminescence spectra reveal extra absorption and emission spectra induced by the IBs, which are further supported by first-principle calculations. Wide spectrum solar response greatly enhances photocatalysis, photovoltaics, and photo-induced hydrogen production due to the intermediate band.
Chongyin Yang; Mingsheng Qin; Yaoming Wang; Dongyun Wan; Fuqiang Huang; Jianhua Lin
Related Documents :
23906325 - Charge and electric field fluctuations in aqueous nacl electrolytes.
7399975 - Electron microscopy of lanthanum in plasma.
23215315 - Evidence for interlayer coupling and moiré periodic potentials in twisted bilayer grap...
23132675 - Mechanistic origin of the vibrational coherence accompanying the photoreaction of biomi...
2653895 - Study of the vaginal mucous membrane following tampon utilisation; aspect on colposcopy...
22165355 - An anatomical study of the intradural space.
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Scientific reports     Volume:  3     ISSN:  2045-2322     ISO Abbreviation:  Sci Rep     Publication Date:  2013 Feb 
Date Detail:
Created Date:  2013-02-15     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101563288     Medline TA:  Sci Rep     Country:  England    
Other Details:
Languages:  eng     Pagination:  1286     Citation Subset:  IM    
1] CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China [2] Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Sci Rep
Journal ID (iso-abbrev): Sci Rep
ISSN: 2045-2322
Publisher: Nature Publishing Group
Article Information
Download PDF
Copyright © 2013, Macmillan Publishers Limited. All rights reserved
Received Day: 01 Month: 11 Year: 2012
Accepted Day: 29 Month: 01 Year: 2013
Electronic publication date: Day: 15 Month: 02 Year: 2013
collection publication date: Year: 2013
Volume: 3E-location ID: 1286
PubMed Id: 23412565
ID: 3573333
Publisher Item Identifier: srep01286
DOI: 10.1038/srep01286

Observation of an Intermediate Band in Sn-doped Chalcopyrites with Wide-spectrum Solar Response
Chongyin Yang12
Mingsheng Qin1
Yaoming Wang1
Dongyun Wan1
Fuqiang Huanga12
Jianhua Lin2
1CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
2Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China

The inability to capture photon energy lower than the band gap of the light absorber poses a fundamental limit to the theoretical efficiency of photovoltaic (PV) cells1. Although solar cells consisting of multiple absorber layers with different band gaps can mitigate this problem, and such strategy is indeed implemented in some III–V based solar cells2, the increased complexity inevitably increases the cost of the cells. Alternatively, solar cells with an intermediate band (IB) promise to extend the absorption spectrum while at the same time preserve the output voltage. The theoretical efficiency (η) of intermediate band cells can reach 63%, far beyond the single-junction silicon solar cells (η ≤ 31%)3. Band diagram of the IB cells is shown in Fig. 1. The partially-filled intermediate band can provide empty states to receive the electrons pumped by photon “3” and further pump the electrons from there by photon “2”. The solar response is significantly extended to lower energy photons, especially in near-infrared (NIR) region. As well known, the solar spectrum (on earth) is a blackbody radiation with strong visible and NIR emissions. In consequence, the multi-photon absorption of two sub-band gaps (EH and EL) efficaciously enhances the photocurrent without photo-voltage degradation.

The intermediate band material of N-doped GaAs was estimated to achieve η ~ 40% in a multiband cell4, but the III–V thin films are fabricated by expensive metal organic chemical vapor deposition, which is not affordable for civilian uses. Cu-based chalcopyrite semiconductors are nowadays used as light absorbers in the highest efficiency thin-film solar cells (Cu(In,Ga)(Se,S)2, η = 20.3%)5, 6. The solar cells possess an extraordinary defect tolerance and the possibility for economic applications. Due to the band gaps deviated from 2.4 eV for CuGaS2 (CGS) to 1.45 eV for CuInS2 (CIS), they only absorb partial solar spectrum. Thus, intermediate bands introduced to these chalcopyrites should enable them to more efficiently utilize solar energy.

Many predictions have been theoretically placed on the wide-spectrum absorption of chalcopyrites by introducing various dopants (Ti, V, Cr, Ni, etc.)7, 8, 9, 10, 11, but direct experimental evidences on the existence of intermediate band were still lack12, 13. For example, the 3d-metal atoms commonly doped in CuGaS2 form IBs in the forbidden band gap from these 3d-metal orbitals7, 8, 9. Since the 3d states of transition metal are rather localized, the optical transitions related to IB may not be favorable due to indirect transition or low light absorption coefficients. Furthermore, the low carrier mobility on the 3d orbitals of transition metal cannot satisfy the requirement of photovoltaic cells. Thus, the transition metal might not be the best candidate to achieve high efficiently IB absorption in chalcopyrite.

In this paper, intermediate bands were introduced into CuMS2 (M = In, Ga) by Sn doping (Fig. 1) to greatly enhance solar energy absorption and conversion. Nanostrcutured Sn-doped CuMS2 powder was synthesized by simple mechanically ball-milling of Cu2S and M2S3, and the corresponding thin films were prepared by a non-vacuum solution-based approach. The intermediate band in Sn-doped CuMS2 was directly evidenced by diffuse reflection spectra and photoluminescence spectra. With the aid of wide-spectrum solar response, especially from the NIR region, the more efficient solar energy conversions were yielded in photocatalytic reactions and photoelectrochemical cells.


In order to evaluate the ball-milling method, the harvested CuMS2 (M = In, Ga) powders were investigated by transmission electron microscopy (TEM) (Fig. 2a). The morphologies of CuIn1−xGaxS2 are fairly uniform in size of 100–200 nm. STEM elemental mapping analysis was further examined the distribution of Sn in the doped samples. The elemental mappings of Ga, Sn, and S, as shown in Fig. 2b, have a homogeneous spatial distribution. The uniform elemental distribution of CuIn1−xSnxS2 was also confirmed (see in Fig. S1 of Supporting Information). The concentration of Sn was investigated by quantitative analyses of energy-dispersive X-ray spectroscopy (EDS). The EDS measurements are in good agreement with the nominal values, as summarized in Table S1 of Supporting Information.

The phase purity of Sn-doped CuMS2 (M = In, Ga) was investigated by X-ray diffraction (XRD). The diffraction peaks were all indexed to a chalcopyrite structure (Fig. 2c)14, and no impurities were observed. Linear dependence of lattice constants (a, c) on the Sn-doping level (x) for CuM1−xSnxS2 reveals the typical feature of solid solution, as shown in Fig. 2d. The successful doping of Sn is also evidenced by a right shift of XRD peaks in CuIn1−xSnxS2 and a left shift in CuGa1−xSnxS2 due to the atom radius of Sn (1.41 Å) smaller than In (1.44 Å) and larger than Ga (1.26 Å).

From the above results and discussion, the ball milling is demonstrated to be an excellent method to synthesize uniform nanostructured CuMS2 powder. Quantitative composition analysis and crystal structure evolution reveal that the as-prepared samples possess both the homogeneity of element distributions and the compatibility of lattice structure. High quality of samples is due to selecting Cu2S and M2S3 as “metastable” starting materials15. The mechanic energy from ball-milling initializes the exothermic reaction of Cu2S and M2S3 to rapidly form CuMS2. Similarly, ceramic CuInSe2 was sintered by us from the reaction of Cu2Se and In2Se3 at 550°C16, whose sintering temperature is lower than the reported samples (~700°C)17. The polycrystalline CuIn0.7Ga0.3Se2 films were also prepared from Se-coated Cu(Ga) and In layers at 550°C in a few seconds18. The proposed method can avoids introducing some potential impurities, which is difficult for solution process methods19, 20. This newly-developed method is applicable to synthesize the other chalcopyrites.

As shown in Fig. 3a, the color of the pressed CuGa1−xSnxS2 powder varies from orange (x = 0), dark red (x = 0.02), to dark brown (x = 0.04). The light absorptions of these powders were verified by UV-Vis-NIR diffuse reflection spectra. The plots of (αhν)2 versus hν are shown in Fig. 3b and S2a, based on the modified Kubelka–Munk function of F(R) = (1−R)2/(2R) = α/S, where R is the reflectance, and α and S are the absorption and scattering coefficients. With increasing x, the onset of the absorption coefficient shifts significantly to lower photon energy, which is indexed by the direct band gap (Eg) from the extrapolated intercept of the linear portion of the plot of (αhν)2 against hν (Fig. 3b and S2b). The corresponding band gaps of CuGa1−xSnxS2 are 2.35 eV (x = 0), 1.98 eV (x = 0.02), and 1.80 eV (x = 0.04); the Eg of CuIn1−xSnxS2 are 1.42 eV (x = 0), 1.14 eV (x = 0.02), and 1.03 eV (x = 0.04). It indicates that Sn doping in CuMS2 successfully extends their solar response spectra (Fig. 3d). In order to show the detail of the absorption spectra, the low absorption coefficient part of CuGa1−xSnxS2 are magnified and shown in Fig. 3c. The extra absorption peaks at 0.7 eV and 1.7 eV are related to the absorption extra photons of 2 (IB → CBM, >0.7 eV) and hν3 (VBM → IB, >1.7 eV). The similar extra absorption spectra were predicted or observed in other intermediate band related materials (In2S3:V, ZnTe:O etc.)30, 31.

In order to meet the requirements for the future applications on thin film photovoltaic cells, the CuIn1−xSnxS2 films were prepared by a non-vacuum method and annealed in 5 mol% H2S-contained Ar atmosphere at 600°C for 15 min. The film is polycrystalline and the average grain size is about 1 μm (Fig. S5), comparable to the CuInGaSe2 (CIGS) film in CIGS solar cells21. The CuInS2 film shows a direct optical band gap of 1.45 eV in Fig. 3d, consistent with the reported data22. With increasing x in the CuIn1−xSnxS2 film, the onset of the absorption coefficient also shifts significantly to NIR range (i.e., ~1.0 eV @ x = 0.04), which is similar to the powdered samples. As well known, CuInS2 thin films have been used as light absorber in CuInS2 solar cells with η = 11.4%23. The drawback is that CuInS2 only absorbs the visible and ultraviolet lights (λ < 825 nm). The introduction of intermediate band in the CuIn0.96Sn0.04S2 film shows a larger absorption in the solar spectrum (AM 1.5, shown in yellow background in Fig. 3d). Herein, it is promising for the CuIn1−xSnxS2 films to combine wide spectrum absorption and high open-circuit voltage in further PV applications.

The underlying reason for Sn doping to extend their absorption spectra needs further investigation. The Sn atoms in the M3+ sites have to possess the oxidation state of +3 to balance the charge, similar to Sn2S324. The coexisting Sn2+ and Sn4+ were evidenced by X-ray photoemission spectroscopy (XPS) (Fig. 4a). Two peak structures in the binding energy range from 485 eV to 500 eV observed in CuGa1−xSnxS2 are assignable to be Sn 3d5/2 and Sn 3d3/2. The asymmetric Sn 3d5/2 peak was fitted by two peaks with binding energy at 488.3 eV and 487.2 eV, assigned to Sn4+−S and Sn2+−S bonds, respectively24, 25. Similarly, Sn 3d3/2 peak was also fitted by two peaks at 496.7 eV and 495.7 eV. Therefore, the partially filled Sn 5s states should be located in-between the valance band maximum (VBM) and the conduction band minimum (CBM) of CuMS2. In order to monitor the energy states of Sn, the photoluminescence (PL) spectra of the CuIn1−xSnxS2 films were performed, as shown in Fig. 4b. The green laser light (λ = 514.5 nm) was employed to excite the films at room temperature. The obvious PL peak centered at ~1.4 eV was observed in all the CuIn1−xSnxS2 films, which is identical to the optical absorption edge of CuInS2 (Eg = 1.45 eV), due to the near-bandgap emission. An extra PL peak in the NIR region (~0.78 eV) was also revealed in the Sn-doped film (e.g., x = 0.04). The recombination model of light-excited electron−hole pairs at ~0.78 eV was proposed to occur from IB to VBM, as shown in the inset of Fig. 4b. This is a solid evidence to observe the existence of an intermediate band in CuM1−xSnxS2 (x ≠ 0). The CuIn0.98Sn0.02S2 also shows an additional PL peak (~0.75 eV) at nearly same position as x = 0.04. The lower peak intensity and narrower full width at half maximum of the peak were observed, which indicate that the distribution of the IB electron states is depended on the doping level of Sn.

Therefore, the Eg reduction in CuM1−xSnxS2, compared with CuMS2, is due to the intermediate band. According to the theory of quantum leap, the leap probability of electrons from VBM to IB and from IB to CBM is proportional to the density of states (DOS) in IB. Thus, electrons in Sn-doped CuMS2 are able to be excited from VBM to IB or from IB to CBM, and some photons with hν < Eg can be absorbed. However, large Sn doping (>4 mol%) favors solar absorption, but a secondary phase (SnS2) may occurs.


In order to further confirm the intermediate band, the electronic structures of CuM1−xSnxS2 (M = In, Ga) were calculated by first-principles theoretical calculations. The direct transition gaps at Γ (0, 0, 0) are 2.6 eV for CGS and 1.6 eV for CIS (Fig. 4c and S4a), which are consistent with the experimental data (Eg = 2.35 eV for CGS, 1.45 eV for CIS). The direct transition (VBM → CBM) usually leads a high light absorption coefficient due to needing no extra phonon momentum. Surprisingly, the band structure of Sn-doped CuMS2 is nearly same to the undoped one, except that an intermediate band appears between VBM and CBM. The intermediate band was confirmed by analyzing the DOS of the undoped and the Sn-doped CuMS2 (Fig. 4d and S4b), which is consistent with the previous calculations26. The VBM of CuMS2 consists of the Cu-3d states hybridized with S-3p, and the CBM consists of M-ns (n = 4 for Ga, 5 for In) and S-3p states. The partially filled IB mainly contains Sn-5s and S-3p states, as desired for the IB scheme (Fig. 1b). Hence, CuM1−xSnxS2 has three direct bandgap transitions (VBM → CBM, VBM → IB, IB → CBM) enabling to absorb more photons.

Experimental and theoretical results confirm the existence of intermediate band and much wider spectrum solar response. Such IB materials have not been studied in photocatalysis. Hereby, CuGa1−xSnxS2 is selected to verify its IB light absorption and enhanced photocatalysis, as schematized in Fig. 5a. The photocatalytic performance is evaluated by degrading methylene blue (MB) under a xenon light source chopped by two optical high-pass filters (420 nm, 650 nm). The Sn-doped samples show much higher photocatalytic activities than the undoped one under the irradiation of visible-light and NIR spectrum (>420 nm) (Fig. 5b). The respective MB removals over CuGaS2, CuGa0.98Sn0.02S2, and CuGa0.96Sn0.04S2 are 62%, 78%, and 81% after the 90 min illumination. The enhanced photocatalytic activities in the IB samples are apparently due to the wide-spectrum solar response, as derived from the UV-Vis-NIR diffuse reflectance spectra in Fig. 3b. CuGaS2 only absorbs hν1 photons (VBM → CBM, >2.35 eV) from the xenon lamp to degrade MB. The IB samples can absorb the extra photons of hν2 (IB → CBM, >0.7 eV) and hν3 (VBM → IB, >1.7 eV). In order to verify the IB absorption, a 650 nm (1.9 eV) optical high-pass filter was used to cutoff the >Eg photons, and the NIR-light degradations are shown in Fig. 5c. Again, the IB samples are better by comparing the MB removals in 120 min over CuGa1−xSnxS2, 10% (x = 0), 24% (x = 0.02), and 34% (x = 0.04), which is attributed to the cascade absorption of hν3 and hν2 photons in the Sn-doped CuGaS2. The cycling degradation improvement of CuGa0.96Sn0.04S2 is nearly same in five cycles (Fig. 5d).

Wide-spectrum solar response materials were further verified to improve photovoltaic conversion. The CuIn1−xSnxS2 thin films on Mo/SiO2 substrates were assembled into photoelectrochemical (PEC) cells (Fig. 6a). The electrochemical analysis was conducted in a three-electrode configuration using 0.25 M Na2S aqueous solution electrolyte. The Mott-Schottky (M-S) plot obtained at the frequency of 1,000 Hz in dark has a negative slope to indicate the p-type conduction of CuInS2 (Fig. 6c). The flat-band potential estimated from the extrapolation of the M-S plot is about 0.67 eV relative to Ag/AgCl27. The alignment of band edge of the CuInS2 film and water redox potential (the insert of Fig. 6c) indicates that the CuInS2 film is available as photocathode for PEC application. Fig. 6b shows linear sweep voltammetry under illumination (λ > 420 nm), and the photocurrent densities of Sn-doped film are higher than CuInS2 film. At 0 VAg/AgCl, the photocurrent densities were 2.83 mA/cm2 for CuInS2 and 3.52 mA/cm2 for CuIn0.96Sn0.04S2. The improvement of photocurrent densities is contributed by the wide-spectrum solar response from the intermediate band effect. In order to get an obvious evidence of this effect, a 900 nm (1.38 eV) optical high-pass filter was used to cutoff the most >Eg photons. Under the NIR light, CuIn0.96Sn0.04S2 has a photocurrent density of is 1.4 mA/cm2 at 0 VAg/AgCl, much higher than CuInS2 (0.2 mA/cm2). It was further confirmed by ON/OFF light cycling with the potential swept at 5 mV s−1 toward negative potential (Fig. 6d). The remarkable improvement in PEC properties verifies that the intermediate band increases the photocurrent densities by the cascade absorption of hν3 (VBM → IB) and hν2 (IB → CBM) photons.

In summary, the intermediate band was demonstrated in Sn-doped CuMS2 (M = In, Ga). The uniform nanostructured CuMS2 particles and polycrystalline thin films were synthesized by newly-developed methods. Significant red shifts found in the absorption spectra of CuM1−xSnxS2 are caused by the triple absorption bands (VBM → CBM, VBM → IB, IB → CBM), further confirmed by photoluminescence and band structure calculations. Due to wide spectrum response, the enhanced photoelectric conversion revealed the better performance in photocatalysis and photocurrent generation. These results may introduce Sn-doped CuMS2 to be applied in future full-spectrum solar cells.

Samples preparation

A non-toxic solvent-based process was first developed to prepare nanostructured particles and films of CuMS2 (M = In, Ga). The raw powder of Cu2S, In2S3, and Ga2S3 were synthesized in the solid state reactions from the stoichiometric elements of Cu (99.999%, SinoReag), S (99.999%, SinoReag), In (99.999%, SinoReag), and Ga (99.999%, SinoReag) in a sealed evacuated fused silica tube. The nanostructured particles of CuMS2 were harvested from ball-milling the mixtured Cu2S and M2S3 powder with the atomic ratio of Cu:M:S = 1:1:2 for 24 h. The as-prepared powder were further dispersed in ethanol and further milled for 6 h to obtain the slurry. The precursor thin films of CuInS2 were spin-coated on both SiO2 and Mo/SiO2 substrates by using the slurry. All the as-coated films were annealed in H2S/Ar atmosphere (5 mol% H2S, 5000 Pa) at 600°C for 15 min. The Sn-doped samples were prepared only by substituting M with Sn from the same procedure described above.


CuM1−xSnxS2 powder samples were transferred to a TEM grid (Quantifoil Cu 200 mesh) for these investigations. TEM and STEM elemental mapping were conducted using a JEOL 2100F microscope, operating at 200 kV. Patterns of XRD of the samples were obtained (Bruker D8 FOCUS, at 40 KV and 40 mA) using Cu Kα radiation (λ = 0.15418 nm). The optical absorption spectra of samples were obtained at room temperature by the UV-Vis-NIR spectrometer (Hitachi U4100) equipped with an integrating sphere. The photoluminescence spectra of samples were obtained at room temperature, excited by the green laser light (λ = 514.5 nm) and detected by visible light and NIR (InSb) detectors. XPS experiments were carried out on a RBD upgraded PHI-5000C ESCA system (Perkin Elmer) with Mg Kα radiation (hν = 1253.6 eV). Binding energies were calibrated by using the containment carbon (C 1 s = 284.6 eV).

Calculation details

Band structure calculations were performed using the plane-wave projector augmented-wave (PAW) method applying the Heyd-Scuseria-Ernzerhof (HSE) hybrid function28, 29. We constructed a supercell which contained 32 atoms and then substituted one M atom by Sn corresponding to the doping content of 12.5%. The cutoff energy of plane wave was chosen at 300 eV.

Photocatalytic and PEC test

The photocatalytic degradation of methylene blue was carried out in a reaction container equipped with an optical system including a 300 W xenon lamp and optical high-pass filters with the different cutoff wavelengths. The transparency spectra of the filters are shown in Fig. S3 of Supporting Information. The volume of the initial 10 mg/L MB solution is 200 ml, and the catalyst powder are 100 mg. Light illumination is conducted after the suspension is stirred in the dark for 30 min to reach the adsorption–desorption equilibrium of organic dye on catalyst surface. During irradiation, about 3 ml suspension is continually taken from the reaction cell at given time intervals for subsequent MB concentration analysis after centrifuging. PEC measurements were performed in a typical three-electrode potentiostat system (Parstat 2773), in which the CuIn1−xSnxS2 film on Mo/SiO2 substrate, a Pt wire, and an Ag/AgCl electrode were used as the working, counter, and reference electrodes, respectively. 0.25 M Na2S aqueous solution was used as the supporting electrolyte to maintain the stability of films. A solar simulator (AM 1.5) with a power of 100 mW/cm2 was used as the illumination source. Photocurrent ON/OFF cycles were measured using the same electrochemical workstation coupled with a mechanical chopper.

Author Contributions

C.Y.Y. designed the experiments, synthesized materials, conducted all the tests and wrote the manuscript. Q.M.S. designed the experiments and processed synthesis of thin films. D.Y.W. and Y.M.W. designed and conducted PEC tests. F.Q.H. and J.H.L. supervised the overall project, designed the experiments, and wrote the manuscript.

Supplementary Material Supplementary Information

Supplementary Information

Click here for additional data file (srep01286-s1.doc)

The authors thank Prof. I-Wei Chen at the University of Pennsylvania for fruitful discussions and insightful suggestions. Financial support was from National 863 Program of China (Grant No. 2011AA050505), NSF of China (Grant Nos. 91122034, 51125006, 51121064, 51102263), and Innovation Program of the CAS (Grant No. KJCX2-EW-W11).

Shockley W., & Queisser H. J.,Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys.32, 510–519 (Year: 1961).
Green M. A.,, Emery K.,, Hishikawa Y., & Warta W.,Solar cell efficiency tables (Version 32). Prog. Photovoltaics Res. Appl.16, 435–440 (Year: 2008).
Luque A.,, Martí A., & Stanley C.,Understanding intermediate-band solar cells. Nat Photon6, 146–152 (Year: 2012).
López N.,, Reichertz L. A.,, Yu K. M.,, Campman K., & Walukiewicz W.,Engineering the Electronic Band Structure for Multiband Solar Cells. Phys. Rev. Lett.106, 028701–4 (Year: 2011).21405256
Jackson P.,, Hariskos D.,, Lotter E.,, Paetel S.,, Wuerz R.,, Menner R.,, Wischmann W., & Powalla M.,New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovoltaics Res. Appl.19, 894–897 (Year: 2011).
Siebentritt S.,Wide gap chalcopyrites: material properties and solar cells. Thin Solid Films403–404, 1–8 (Year: 2002).
Palacios P.,, Sánchez K.,, Conesa J.,, Fernández J., & Wahnón P.,Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds. Thin Solid Films515, 6280–6284 (Year: 2007).
Aguilera I.,, Palacios P., & Wahnón P.,Enhancement of optical absorption in Ga-chalcopyrite-based intermediate-band materials for high efficiency solar cells. Sol. Energy Mater. Sol. Cells94, 1903–1906 (Year: 2010).
Palacios P.,, Sánchez K.,, Conesa J. C., & Wahnón P.,First principles calculation of isolated intermediate bands formation in a transition metal-doped chalcopyrite-type semiconductor. Phys. Stat. Sol. A203, 1395–1401 (Year: 2006).
Marrón D. F.,, Martí A., & Luque A.,Thin-film intermediate band photovoltaics: advanced concepts for chalcopyrite solar cells. Phys. Stat. Sol. A206, 1021–1025 (Year: 2009).
Tablero C., & Fuertes Marrón D.,Analysis of the Electronic Structure of Modified CuGaS2 with Selected Substitutional Impurities: Prospects for Intermediate-Band Thin-Film Solar Cells Based on Cu-Containing Chalcopyrites. J. Phys. Chem. C114, 2756–2763 (Year: 2010).
Marsen B.,, Steinkopf L.,, Singh A.,, Wilhelm H.,, Lauermann I.,, Unold T.,, Scheer R., & Schock H. W.,Effects of Ti-incorporation in CuInSe2 solar cells. Sol. Energy Mater. Sol. Cells94, 1730–1733 (Year: 2010).
Marsen B.,, Klemz S.,, Unold T., & Schock H. W.,Investigation of the Sub-Bandgap Photoresponse in CuGaS2:Fe for Intermediate Band Solar Cells. Prog. Photovoltaics Res. Appl.20, 625–629 (Year: 2012).
Abrahams S. C., & Bernstein J. L.,Piezoelectric nonlinear optic CuGaS2 and CuInS2 crystal structure: Sublattice distortion in AIBIIIC2VI and AIIBIVC2V type chalcopyrites. J. Chem. Phys.59, 5415–5422 (Year: 1973).
Fang A. H.,, Huang F. Q.,, Xie X. M., & Jiang M. H.,Low-Temperature Rapid Synthesis and Superconductivity of Fe-Based Oxypnictide Superconductors. J. Am. Chem. Soc.132, 3260–3261 (Year: 2010).20170119
Yang C. Y.,, Wang Y. M.,, Li S. T.,, Wan D. Y., & Huang F. Q.,CuSbSe2-assisted sintering of CuInSe2 at low temperature. J. Mater. Sci.47, 7085–7089 (Year: 2012).
Surek T.,Crystal growth and materials research in photovoltaics: progress and challenges. J. Cryst. Growth275, 292–304 (Year: 2005).
Palm J.,, Probst V.,, Stetter W.,, Toelle R.,, Visbeck S.,, Calwer H.,, Niesen T.,, Vogt H.,, Hernández O.. , Wendl M., & Karg F. H.,CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability. Thin Solid Films451–452, 544–551 (Year: 2004).
Tanaka K.,, Moritake N., & Uchiki H.,Preparation of thin films by sulfurizing sol–gel deposited precursors. Sol. Energy Mater. Sol. Cells91, 1199–1201 (Year: 2007).
Panthani M. G.,, Akhavan V.,, Goodfellow B.,, Schmidtke J. P.,, Dunn L.,, Dodabalapur A.,, Barbara P. F., & Korgel B. A.. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1−x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics. J. Am. Chem. Soc.130, 16770–16777 (Year: 2008).19049468
Zhu X. L.,, Zhou Z.,, Wang Y. M.,, Zhang L.,, Li A. M., & Huang F. Q.,Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells. Sol. Energy Mater. Sol. Cells101, 57–61 (Year: 2012).
Antony A.,, Asha A. S.,, Yoosuf R.,, Manoj R., & Jayaraj M. K.,Growth of CuInS2 thin films by sulphurisation of Cu–In alloys. Sol. Energy Mater. Sol. Cells81, 407–417 (Year: 2004).
Braunger D.,, Hariskos D.,, Walter T., & Schock H. W.,An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer. Sol. Energy Mater. Sol. Cells40, 97–102 (Year: 1996).
Cruz M.,, Morales J.,, Espinos J. P., & Sanz J.,XRD, XPS and 119 Sn NMR study of tin sulfides obtained by using chemical vapor transport methods. J. Solid State Chem.175, 359–365 (Year: 2003).
Morgan W. E., & Van Wazer J. R.,Binding energy shifts in the x-ray photoelectron spectra of a series of related Group IVa compounds. J. Phys. Chem.77, 964–969 (Year: 1973).
Luque A., & Martí A.,Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels. Phys. Rev. Lett.78, 5014–5017 (Year: 1997).
Li T. L., & Teng H.,Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes. J. Mater. Chem.20, 3656–3664 (Year: 2010).
Blöchl P. E.,Projector augmented-wave method. Phys. Rev. B50, 17953–17979 (Year: 1994).
Heyd J.,, Scuseria G. E., & Ernzerhof M.,Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys.118, 8207–8215 (Year: 2003).
Yu K. M.,, Walukiewicz W.,, Wu J.,, Shan W.,, Beeman J. W.,, Scarpulla M. A.,, Dubon O. D.,, & Becla P.. Diluted II-VI oxide semiconductors with multiple band gaps. Phys. Rev. Lett.91, 246403–246404 (Year: 2003).14683137
Lucena R.,, Aguilera I.,, Palacios P.,, Wahnon P., & Conesa J. C.,Synthesis and spectral properties of nanocrystalline V-Substituted In2S3: A novel material for more efficient use of solar radiation. Chem. Mater.20, 5125–5127 (Year: 2008).

Article Categories:
  • Article

Previous Document:  Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescenc...
Next Document:  Far Field RF Powering of Implantable Devices: Safety Considerations.