Document Detail

Novel dual-color immunohistochemical methods for detecting ERG-PTEN and ERG-SPINK1 status in prostate carcinoma.
Jump to Full Text
MedLine Citation:
PMID:  23348902     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Identification of new molecular markers has led to the molecular classification of prostate cancer based on driving genetic lesions. The translation of these discoveries for clinical use necessitates the development of simple, reliable and rapid detection systems to screen patients for specific molecular aberrations. We developed two dual-color immunohistochemistry-based assays for the simultaneous assessment of ERG-PTEN and ERG-SPINK1 in prostate cancer. A total of 232 cases from 184 localized and 48 metastatic prostate cancers were evaluated for ERG-PTEN and 284 cases from 228 localized and 56 metastatic prostate cancers were evaluated for ERG-SPINK1. Of the 232 cases evaluated for ERG-PTEN, 81 (35%) ERG-positive and 77 (33%) PTEN-deleted cases were identified. Of the 81 ERG-positive cases, PTEN loss was confirmed in 35 (15%) cases by fluorescence in situ hybridization (FISH). PTEN status was concordant in 203 cases (sensitivity 90% and specificity 87%; P<0.0001) by both immunohistochemisty and FISH; however, immunohistochemisty could not distinguish between heterozygous and homozygous deletion status of PTEN. Of the 284 cases evaluated for ERG-SPINK1, 111 (39%) cases were positive for ERG. In the remaining 173 ERG-negative cases, SPINK1 was positive in 26 (9%) cases. SPINK1 expression was found to be mutually exclusive with ERG expression; however, we identified two cases, of which one showed concomitant expression of ERG and SPINK1 in the same tumor foci, and in the second case ERG and SPINK1 were seen in two independent foci of the same tumor nodule. Unlike the homogenous ERG staining in cancer tissues, heterogeneous SPINK1 staining was observed in the majority of the cases. Further studies are required to understand the molecular heterogeneity of cases with concomitant ERG-SPINK1 expression. Automated dual ERG-PTEN and ERG-SPINK1 immunohistochemisty assays are simple, reliable and portable across study sites for the simultaneous assessment of these proteins in prostate cancer.
Authors:
Ritu Bhalla; Lakshmi P Kunju; Scott A Tomlins; Kelly Christopherson; Connie Cortez; Shannon Carskadon; Javed Siddiqui; Kyung Park; Juan Miguel Mosquera; Gary A Pestano; Mark A Rubin; Arul M Chinnaiyan; Nallasivam Palanisamy
Publication Detail:
Type:  Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't     Date:  2013-01-25
Journal Detail:
Title:  Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc     Volume:  26     ISSN:  1530-0285     ISO Abbreviation:  Mod. Pathol.     Publication Date:  2013 Jun 
Date Detail:
Created Date:  2013-06-03     Completed Date:  2014-01-13     Revised Date:  2014-04-15    
Medline Journal Info:
Nlm Unique ID:  8806605     Medline TA:  Mod Pathol     Country:  United States    
Other Details:
Languages:  eng     Pagination:  835-48     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Carcinoma / chemistry*,  secondary
Carrier Proteins / analysis*
Gene Deletion
Heterozygote
Homozygote
Humans
Immunohistochemistry*
In Situ Hybridization, Fluorescence
Male
Oncogene Proteins, Fusion / analysis*,  genetics
PTEN Phosphohydrolase / analysis*,  genetics
Predictive Value of Tests
Prostatic Neoplasms / chemistry*,  genetics,  pathology
Tissue Array Analysis
Trans-Activators / analysis*
Tumor Markers, Biological / analysis*,  genetics
Grant Support
ID/Acronym/Agency:
P30 CA046592/CA/NCI NIH HHS; P50 CA069568/CA/NCI NIH HHS; P50 CA69568/CA/NCI NIH HHS; R01 CA132874/CA/NCI NIH HHS; U01 CA111275/CA/NCI NIH HHS; U01 CA111275/CA/NCI NIH HHS; U01 CA113913/CA/NCI NIH HHS; //Howard Hughes Medical Institute
Chemical
Reg. No./Substance:
0/Carrier Proteins; 0/ERG protein, human; 0/Oncogene Proteins, Fusion; 0/SPINK1 protein, human; 0/Trans-Activators; 0/Tumor Markers, Biological; EC 3.1.3.48/PTEN protein, human; EC 3.1.3.67/PTEN Phosphohydrolase
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-journal-id): 8806605
Journal ID (pubmed-jr-id): 6644
Journal ID (nlm-ta): Mod Pathol
Journal ID (iso-abbrev): Mod. Pathol.
ISSN: 0893-3952
ISSN: 1530-0285
Article Information
Download PDF

License:
nihms-submitted publication date: Day: 2 Month: 4 Year: 2013
Electronic publication date: Day: 25 Month: 1 Year: 2013
Print publication date: Month: 6 Year: 2013
pmc-release publication date: Day: 01 Month: 12 Year: 2013
Volume: 26 Issue: 6
First Page: 835 Last Page: 848
PubMed Id: 23348902
ID: 3672354
DOI: 10.1038/modpathol.2012.234
ID: NIHMS426248

Novel Dual Color Immunohistochemical methods for detecting ERG-PTEN and ERG-SPINK1 status in prostate carcinoma
Ritu Bhalla12
Lakshmi P Kunju12
Scott A Tomlins12
Kelly Christopherson3
Connie Cortez3
Shannon Carskadon12
Javed Siddiqui12
Kyung Park4
Juan Miguel Mosquera4
Gary Pestano3
Mark A Rubin4
Arul Chinnaiyan12567
Nallasivam Palanisamy126#
1Michigan Center for Translational Pathology, Ann Arbor, MI, USA
2Department of Pathology, University of Michigan, Ann Arbor, MI, USA
3Ventana Medical Systems, Inc., A member of the Roche Group, Tucson, AZ, USA
4Department of Pathology and Laboratory of Medicine, Weill Cornell Medical College, New York, NY, USA
5Department of Urology, University of Michigan, Ann Arbor, MI, USA
6Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
7Howard Hughes Medical Institute, Chevy Chase, MD, USA
#Corresponding Author Nallasivam Palanisamy, Ph.D. Michigan Center for Translational Pathology Department of Pathology Comprehensive Cancer Center University of Michigan Medical School 2900, Huron Parkway Traverwood IV, Suite 100, Room 1219 Ann Arbor, MI 48105 nallasiv@med.umich.eduPhone: 734-615-1417

INTRODUCTION

Prostate cancer poses a major public health challenge for men in the United States and the identification of disease-specific biomarkers is critical for the clinical management of prostate cancer. Over the last decade several studies have identified various molecular aberrations in prostate cancer. Recurrent gene fusions involving the E26 transformation-specific (ETS) family of transcription factors, ERG, ETV1, ETV4 and ETV5, fused to androgen-regulated TMPRSS2 and other 5′ partner genes have been identified in the majority of prostate cancers (1-8). The discoveries of gene fusions as well as other molecular lesions have potential implications for diagnosis, prognosis and therapy (1, 8, 9). Overall, early- and mid-stage localized prostate cancers and hormone refractory metastatic cancers harbor TMPRSS2:ERG rearrangements in 50% or more cases, whereas high grade prostatic intraepithelial neoplasia has a lower frequency of gene fusions (10 ~ 20%) (10-15). Benign prostate epithelial glands, atrophy, or stroma do not demonstrate any expression of the ERG gene fusion product, as reported by Perner et al, (14) as well as other studies that used fluorescence in situ hybridization (FISH) to determine ERG rearrangement status (8, 16).

Genetic aberrations in nearly 50% of the remaining ETS-fusion negative prostate cancer cases are largely unknown. Our group reported the identification of SPINK1 (serine peptidase inhibitor, Kazal type 1) overexpression in a subset of prostate cancer (~10%) that is mutually exclusive from ETS gene fusion positive prostate cancers (17). In a subsequent study, Ateeq et al. reported that the oncogenic phenotype mediated by SPINK1 overexpression can be inhibited by anti-SPINK1 antibody but had no effect on ERG gene fusion-mediated cell growth and metastasis, suggesting a potential therapeutic avenue for a subset of prostate cancer with SPINK1 overexpression (18). Another study to identify driving genetic aberrations in ETS fusion-negative prostate cancer using next generation sequencing techniques led to the discovery of recurrent RAF (BRAF and RAF1) gene rearrangements in 1-2% of prostate cancers and subsets of gastric cancer and melanoma. These cancers harboring BRAF and RAF1 gene fusions can be targeted with approved and investigational drugs, the latter in late stage development, hence screening patients for these fusions will help identify those who may benefit from RAF kinase inhibitors (19).

PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a key tumor suppressor gene in prostate cancer (20) that plays an important role in the modulation of the phospatidylinositol-3-kinase (PI3K) pathway and downstream protein kinase, AKT. This pathway regulates a number of target genes such as BAD, CASP3 and CASP9, MDM2, mTOR, the forkhead family of transcription factors (FKHR) and p27 that are involved in apoptosis and cell cycle progression (21-28). PTEN loss and subsequent activation of the PI3K pathway are associated with tumor progression in prostate cancer (29, 30) and several new therapies targeting the P13K/AKT including inhibitors of mTOR, P13K and MEK (mitogen-activated kinase) are available. PTEN loss represents another molecular subset of prostate cancer; therefore an accurate assessment of PTEN status in patients is important for pursuing appropriate therapies.

Although androgen-induced ETS gene fusion positive tumors are associated with aggressive prostate cancer, both positive and negative correlations have been reported for gene fusions in prostate cancer (13, 31, 32). Several studies, including a population-based study (31) have found associations on univariate or multivariate analysis between ETS fusions and features of aggressive prostate cancer including higher Gleason grade, increased stage, or decreased prostate specific antigen recurrence-free survival (13, 32-36). Other studies have reported no association with aggressive features or recurrence-free survival (32, 37-41), while others found association with lower Gleason grade (39, 42) or increased recurrence-free survival (43). However, concurrent PTEN loss and ERG rearrangements are generally associated with an aggressive phenotype (44).

On the basis of these discoveries, Rubin et al. developed a molecular classification system for prostate cancer comprising three categories: (1) Prostate cancer with fusions involving ETS gene family members (2) Prostate cancer with RAF kinase family fusions and (3) SPINK1-positive prostate cancers (45). The translation of these discoveries for clinical use necessitates the development of simple, reliable and rapid detection systems to screen patients for specific molecular biomarkers that are potential “druggable” target. Until recently FISH and polymerase chain reaction (PCR) were the predominant methods for detection of most of the markers in prostate cancer. However, the availability of high-specificity antibodies affords us the opportunity to develop new approaches that are more clinically feasible and cost-effective.

ERG rearrangements and PTEN loss have traditionally been detected by FISH studies using dual color break-apart and locus specific probes respectively, which are expensive, time consuming and require independent assessment on two separate slides. Given the multi-focal nature of prostate cancer, methods that can simultaneously assess ERG and PTEN status as well as ERG and SPINK1 status would be ideal. Studies have reported high concordance between ERG immunohistochemistry and FISH in detecting ERG rearrangements (46, 47), and high sensitivity of PTEN immunohistochemisty in detecting PTEN genomic loss (48, 49). Determination of ERG, PTEN and SPINK1 status in independent parallel assays are cumbersome, time consuming and sometimes limited due to availability of tumor specimens, particularly tissues obtained from needle biopsy. Therefore, to overcome the technical limitations associated with independent assessment of ERG, PTEN and SPINK1 status in prostate cancer, we developed novel automated dual color immunohistochemisty assays for the simultaneous assessment of ERG-PTEN and ERG-SPINK1 in prostate cancer and identified a new rare molecular subtype of prostate cancer with concomitant expression of ERG and SPINK1 in either the same or in different foci of same tumor nodule of prostate cancer. This assay is robust, easily portable to other laboratories and can be incorporated at numerous clinical sites to accommodate screening of large patient cohorts.


MATERIALS AND METHODS
Tissue Selection

Multiple tissue microarrays were used in this study including cases from prostate and distant metastases collected at the University of Michigan Health System (details of tissue microarrays provided in Table 1). The metastatic prostate carcinoma samples were obtained from patients diagnosed with hormone refractory prostate cancer who were part of our posthumous tissue donor program. To date 60 such autopsies have been performed. Normal and malignant tissues from multiple sites including bone were collected and incorporated in tissue microarrays used in this study.

The localized prostate cancer samples included radical prostatectomy cases with outcome information, various Gleason scores (screening tissue microarray) as well as prostate cancer cases with low PSA, rare morphologic variants and salvage prostatectomy cases. While these are not consecutive radical prostatectomy cases, we are comfortable that they include the spectrum of localized prostate cancer cases seen at a high-volume institution that are not pre-selected.

In addition, the percentage of ERG-positive cases in these tissue microarrays ( 35-39%), which have also been evaluated and confirmed for TMRPSS2-ERG fusion status by FISH using break-apart ERG assays as previously described (33, 48), are similar to published data from prostatectomy series from other similar institutions. We are confident that this cohort is a representative of PSA-screened prostate cancers at a large tertiary academic center.

For the ERG-PTEN dual immunohistochemistry screening, a total of 232 evaluable cases were used in the analysis. Similarly a total of 283 evaluable cases were used for the ERG-SPINK1 dual immunohistochemistry analysis. One independent case from Ventana Medical Systems, Inc. tumor bank was also included in the analysis. Patients either underwent radical prostatectomy or surgical resections of their metastatic lesions were included. On an average 3 cores (0.6 mm) were obtained from each sample.

Immunohistochemistry

ERG-PTEN dual immunohistochemisty was performed using anti-ERG (EPR3864) rabbit monoclonal primary antibody (1:100) (Cat#790-4576, Ventana Medical Systems, Inc., Tucson, AZ, USA) and a rabbit monoclonal primary antibody against PTEN (1:25) (138G6-Cell Signaling Technology, USA). Dual immunohistochemistry was performed using an automated protocol developed for the DISCOVERY XT automated slide staining system (Ventana Medical Systems, Inc.,) using Ultramap anti-rabbit HRP(Cat#760-4315,Ventana Medical Systems, Inc.,) for ERG and Ultramap anti-rabbit AP (cat#760-4314, Ventana Medical Systems Inc.,) for PTEN as secondary antibodies and were detected using ChromoMap DAB (Cat#760-159, Ventana Medical Systems Inc.,) and ChromoMap Blue (Cat#760-161, Ventana Medical Systems Inc.,) for ERG and PTEN respectively. Nuclear Fast Red counterstain (Cat#780-2186 Ventana Medical Systems, Inc.,) was used as the counterstain. ERG-PTEN immunohistochemistry staining was evaluated by pathologists RB and LPK.

ERG-SPINK1 dual immunohistochemistry was performed using anti-ERG (EPR3864) rabbit Monoclonal primary Antibody (1:100) (Cat# 790-4576, Ventana Medical Systems, Inc., Tucson, AZ, USA) and a mouse monoclonal primary antibody against SPINK1 (1:100) (Cat# Abnova 24-80, Taipei City, Taiwan). Dual immunohistochemistry was performed using an automated protocol developed for the DISCOVERY XT automated slide staining system (Ventana Medical Systems, Inc.,) using Ultramap anti-rabbit HRP (Cat#760-4315, Ventana Medical Systems, Inc., Tucson, AZ, USA) for ERG and Ultramap anti-mouse AP (Cat#760-4312, Ventana Medical Systems, Inc., Tucson, AZ, USA) antibodies for SPINK1 as secondary antibodies and were detected using ChromoMap DAB (Cat#760-159, Ventana-Roche, Tucson, AZ, USA) and ChromoMap Red kit (Cat#760-160, Ventana-Roche, Tucson, AZ, USA) for ERG and SPINK1 respectively. Hematoxylin II (Cat#790-2208 Ventana-Roche, Tucson, AZ, USA) was used as counterstain. ERG and SPINK1 immunohistochemistry staining was evaluated by pathologists RB and LPK.

Immunohistochemistry Evaluation criteria

ERG staining was evaluated by the study pathologists RB and LPK. Staining of vessels with nuclear expression was used as a positive control. ERG staining in prostatic glands was either absent or diffusely strong (2-3+), unless otherwise indicated, and was reported as present/absent. Cores not displaying staining of vessels were classified as the “antibody did not work” group. In addition, we used known ERG rearrangement (confirmed by FISH) positive prostate cancer samples as positive control. High-grade prostate intraepithelial neoplasia and lymphocytes also stained positive with the ERG antibody (lymphocytes usually demonstrated weak to moderate ERG positivity).

Cytoplasmic PTEN staining was observed in all benign prostatic glandular tissue including the basal epithelium. The fibromuscular stroma was negative for PTEN expression. A binary scoring system was applied for PTEN staining. The staining of tumor was compared to the benign epithelium and was scored as positive (increased or equal staining as compared to adjacent benign acini) or negative (decreased or absent staining). We defined staining as positive for PTEN when majority of cells (>90%) showed PTEN staining; staining was defined as negative when it was either absent or weak staining in <10% of cells. PTEN immunohistochemistry results were further validated by simultaneous FISH studies on the tissue microarrays.

SPINK1 expression in prostate cancer samples has been shown to be heterogeneous in previous studies (17, 50) and also in our experience (unpublished observations of stained 60 prostate needle biopsies immunostained with SPINK1 IHC (supplementary Figure 1). In this study, while evaluating the tissue microarray cores only cytoplasmic staining within the cancerous epithelial cells were considered positive. Cytoplasmic SPINK1 expression was estimated and assigned values of 0%, 5% or multiples of 10%. Any score above 5% was considered positive for SPINK1 expression. The fibromuscular stroma was negative for SPINK1 expression.

Fluorescence in situ Hybridization (FISH): ERG-PTEN

BAC clones were used to generate the dual color break-apart FISH probes for ERG (RP11-476D17-3′ probe; RP11-95I21-5′ probe), PTEN locus specific probe (RP11-165M8) and chromosome 10 control probe (RP11-351D16). All clones were tested on normal human metaphase chromosomes to validate map position and these clones have been used extensively in various studies from our laboratory and others (7) (51). 5′ERG and chromosome 10 control probes were detected with anti-digoxigenin fluorescein Fab fragments to yield green color and 3′ERG probe and PTEN locus probes were detected with Streptavidin Alexa fluor 594 to yield red color. Based on the study reported by Park et al. (46) where we have shown concordance between ERG immunohistochemistry and FISH, confirmatory FISH for ERG was not performed.

BAC DNA Preparation

200 ml overnight cultures for each BAC clone were grown in LB medium containing 12.5μgml of chloramphenicol at 37°C for 14-16 hours with constant shaking. DNA was prepared using Qiagen-midiprep kit using Qiatip-100 according to the protocol provided by the manufacturer (Qiagen, USA).

Probe labeling

All FISH probes were prepared by nick translation labeling using modified nucleotides conjugated with biotin or digoxigenin utilizing biotin nick translation mix (11745824910, Roche, USA) for 3′ ERG and PTEN locus probes; digoxigenin nick translation mix (11745816910, Roche, USA) for 5′ ERG and chromosome 10 control probes. Probe DNA was precipitated and dissolved in hybridization mixture containing 50% formamide, 2XSSC, 10% dextran sulphate, and 1% Denhardt’s solution. Approximately 200ng of each labeled probe was used for hybridization. Fluorescent signals were detected with Streptavidin Alexa fluor 594 (S-32356, Invitrogen, USA) and anti-digoxigenin fluorescein Fab fragments (11207741910, Roche, USA) for red and green colors, respectively.

Image capture and FISH signal analysis

FISH scoring was performed by an experienced cytogeneticist (NP) and a pathologist (RB). ERG rearrangement by translocation and/or deletion was recorded when the corresponding abnormal signal pattern was observed in more than 10-15% of cells. Heterozygous deletion for PTEN was recorded when the cells contained one signal for the locus probe and two or more signals for the control probe compared to normal cells with two green and two red signals. Homozygous deletions were recorded when the cells contained no signal for the PTEN locus probe but two or more signal for the control probe. Fluorescent images were captured using a high resolution CCD camera controlled by ISIS image processing software (Metasystems, Germany).

FISH scoring for ERG and PTEN was performed manually under 100X oil immersion objective in non-overlapping and morphologically intact nuclei. A minimum of 50 cells were scored from the cancer tissue. Areas of cancer tissue with weak or no signals and benign adjacent areas were not included in the analysis. For ERG, the normal signal pattern was recorded by the presence of a pair of co-localizing green and red signals and 5′ deletions were recorded by the presence of one co-localizing green and red (yellow) and one individual red signal. ERG translocations were recorded by the presence of one co-localizing green and red signal (yellow) and one non-colocalizing individual green and red signal. Based on the evaluation of the probes on normal prostatectomy FFPE specimens we established a cut-off of 15-20% or more cells with the expected signal pattern for deletion, and translocations were recorded as positive. For PTEN, normal signal pattern was recorded by the presence of separate two green and two red signals for chromosome 10 control and PTEN locus probes respectively. Hemizygous deletions were recorded with more than 50% of cells containing one signal for the locus probe and >2 or more signal for the chromosome 10 control probe. Homozygous deletions were recorded by the loss of both copies of PTEN locus probe and the presence of >2 or more signals for chromosome 10 control probe in more than 30% of cells as cut-off. Considering the sectioning artifacts we established the cut-off values based on the evaluation on normal and tumor samples.


RESULTS
ERG-PTEN dual color immunohistochemisty assay

We performed dual color ERG-PTEN immunohistochemistry in a wide spectrum of prostate tumors from 232 patients represented in tissue microarrays (Table 1). Of the 232 cases evaluated (184, localized prostate cancer; 48 metastatic prostate cancer) (Table 2), seventy seven (33%) (53, localized prostate cancer; 24 metastatic prostate cancer) cases with PTEN deletion were identified by immunohistochemisty. A small fraction of the tumors showed intra-tumoral heterogeneity for PTEN expression, with some areas staining positive for PTEN expression, while other areas were negative.

PTEN status by immunohistochemisty was further validated by FISH on all 232 cases (184 localized and 48 metastatic prostate cancers). Overall, concordance between negative immunohistochemisty and FISH signal indicating PTEN loss, and positive immunohistochemisty and FISH signal indicating intact PTEN were identified in 203 cases (88%). The specificity and sensitivity were 90% and 87% respectively (p <0.0001) (Table 3). A total of 142 cases (61%) with no PTEN deletion by FISH and positive immunohistochemisty (true negative) (Figure 1 A and B), 22 cases (9%) with no PTEN deletion by FISH but negative immunohistochemisty (false positive), 7 cases (3%) with PTEN deletion by FISH but positive immunohistochemisty staining (false negative), and 61 cases (27%) with PTEN deletion by FISH and negative immunohistochemisty (true positive) were observed (Figure 1 C, D, G and H) (Table 3). Sixty eight (29%) cases (40 localized and 28 metastatic prostate cancers) with confirmed PTEN deletion were identified by FISH. However, immunohistochemisty was not consistent in separating heterozygous (36 cases, 16%) (Figure 1 I and J) from homozygous loss (Figure 1 G and H) (32 cases, 13%).

Eighty one ERG (35%) positive cases were identified by immunohistochemistry, including 68 (37%) localized and 13 (27%) metastatic prostate carcinomas. No ERG staining was observed in benign prostatic glands. Simultaneous ERG rearrangement and PTEN deletion (as confirmed by FISH) (Figure 1 C and D) were identified in 35 cases including 23 localized and 12 metastatic prostate carcinomas and normal PTEN copies by FISH and immunohistochemisty with ERG rearrangement (Figure 1 E and F) were observed in the remaining cases. Three cases demonstrated heterogeneous ERG expression.

ERG-SPINK1 dual color immunohistochemisty assay

A total of 227 localized and 56 metastatic prostate carcinomas represented in tissue microarrays and one independent localized prostate cancer were used in the ERG-SPINK1 dual immunohistochemical assay. The details of the tissue microarrays are presented in Table 4.

In all evaluable cores vascular endothelial cells and/or lymphocytes stained positive for ERG protein. One hundred and eleven ERG positive cases were identified including 95 (42%) localized and 16 (29%) metastatic prostate carcinomas (Table 5). Three out of 111 ERG-positive patients demonstrated heterogeneous staining while the remaining 108 had uniform staining in cancer tissues (Figure 2, A and B). In one patient, ERG heterogeneity was recorded between discrete tumor nodules within the prostate gland; in a second patient ERG heterogeneity was observed between metastatic sites. A third patient demonstrated ERG staining at one metastatic nodule in the liver while all the other metastatic sites, including a second liver metastases, were negative.

Cancer-specific heterogeneous/multifocal pattern of cytoplasmic expression of SPINK1 was observed in all positive samples (Figure 2, C and D). Mutual exclusivity was observed between ERG and SPINK1 antibody expressions except for two cases, as discussed below. Intra-tumoral heterogeneity was observed for SPINK1 protein expression, even within a given core on a tissue microarray. Some malignant glands expressed SPINK1 protein while adjacent malignant glands were entirely negative (Figure 2, E and F). Positive SPINK1 expression was observed in 18 (9%) patients including 4 localized and 14 metastatic carcinomas.

An interesting finding was noted in a prostatectomy sample with limited tumor represented on a tissue microarray (Figure 3A). Some prostate cancer glands showed expression of ERG; however, one gland present partially towards the edge of the biopsy was SPINK1 positive (Figure 3B). We further explored the patient’s resection with ERG-SPINK1 immunohistochemisty. As seen on the tissue microarray, the tumor showed expression of both ERG and SPINK1 in adjacent, neighboring foci of the same tumor (Figure 3C). Additionally, in another case of localized prostate cancer we observed a concomitant expression of ERG and SPINK1 in the same focus of the tumor (Figure 3, D and E). Because of the advantages of this novel dual immunohistochemisty procedure, to the best of our knowledge this is the first observation of a rare subset of prostate cancer with concomitant rearrangement of ERG and expression of SPINK1 either in the same or different cancer foci.


DISCUSSION

Identification of prognostic molecular biomarkers is critical for the clinical management of prostate cancer. With recent improvements in early detection of prostate cancer, studies are now focused on the identification and detection of significant molecular markers that can effectively distinguish men with high risk disease from the majority of indolent tumors. Recurrent gene fusions involving ETS family genes are observed in a majority of human prostate cancers, the most common being TMPRSS2-ERG fusions occurring in ~50% of localized prostate cancers, and have potential implications for diagnosis, prognosis and therapy (31) (1, 8, 9).

In this study we developed dual color immunohistochemical method for the simultaneous detection of ERG-PTEN and ERG-SPINK1 status in prostate cancer. Previous studies have confirmed the diagnostic utility of immunohistochemisty in identifying ERG rearrangement (46, 47, 52, 53), PTEN deletion status (48, 49, 54) and SPINK1 overexpression in prostate cancer (17). This is the first study to report the successful simultaneous evaluation of ERG-PTEN and ERG-SPINK1 status in prostate carcinoma using dual color immunohistochemistry.

In our ERG-PTEN study, 35% of prostate carcinoma stained positive with ERG antibody. Previous studies have reported ERG antibody expression in 40-50% of prostate carcinomas, reflecting the incidence of ERG gene rearrangement in the Caucasian population (52, 55, 56). We attribute the slightly lower incidence of ERG antibody expression in our cohort to the over-representation of samples with a dominant (index) nodule that did not always include the secondary smaller foci in the tissue microarray evaluated here. ERG rearrangement heterogeneity has been documented in previous studies between discrete tumor nodules within the same prostate gland (57, 58) and three cases in our study demonstrated heterogeneous ERG expression. Endothelial cells and lymphocytes stained positive with ERG antibody consistent with previous studies (46, 52, 53).

In this new immunohistochemisty assay for PTEN, background benign glands showed robust PTEN staining while the fibromuscular stroma was predominantly negative, although some cases demonstrated weak staining of the stroma. The presence of an internal positive control allowed us to apply a simple dichotomous scoring system for malignant glands as either decreased/absent or normal cytoplasmic PTEN staining. Lotan et al. applied similar binary scoring system to assess PTEN status on immunohistochemisty and found this system to be highly reproducible, although their study found that PTEN was expressed in benign prostatic glands as well as the stroma (49). Sangale et al. evaluated two different scoring systems (59). The first system was similar to one used in the present study and they reported high reproducibility and concordance between pathologists. The second method was a 3 tier system using 0, 1+ and 2+ scores with endothelial cells as the reference for 2+ staining; however they concluded that endothelial cells were an imperfect control since their intensity varied within the same tissue sample. This system took into account the percent of cells staining and intensity, however the 3 tier scheme was not reproducible amongst pathologists.

A major benefit of our study is that we further validated our PTEN immunohistochemisty results with FISH. We found 87% concordance rate between immunohistochemisty and FISH with a sensitivity of 90% and specificity of 87%. Lotan et al. validated their immunohistochemisty data with FISH on some patients and high resolution copy number SNP microarray analysis for a separate group of patients for a total of 119 of 376 cases, with a sensitivity of nearly 80% for FISH and over 80% for high resolution SNP array(49). Yoshimoto et al. performed immunohistochemisty and FISH on all of their 35 radical prostatectomy specimens and detected PTEN deletion in 24 of 35 prostate carcinoma patients (54). All 24 positive cases demonstrated variable weak cytoplasmic and/or nuclear PTEN immunoreactivity thus demonstrating 100% concordance.

Although immunohistochemisty reliably detected homozygous PTEN deletion, in our study we were unable to consistently separate heterozygous from homozygous deletions. Immunohistochemisty was very sensitive in selecting homozygous deletions in cases with absent staining; however there was an overlap of homozygous and heterozygous deletions in cases displaying reduced staining.

TMPRSS2:ERG gene rearrangement has been described as a prostate cancer-specific alteration, present in 40-50% of prostate cancers (8, 9, 60, 61). ERG rearrangement status has traditionally been detected by FISH or reverse transcriptase polymerase chain reaction techniques that are expensive and require fresh frozen tissues for RNA, specialized equipment and expertise. Recent studies have confirmed high correlation between positive ERG immunohistochemisty staining and FISH for ERG gene rearrangements (46, 55). The sensitivity and specificity for prediction of ERG gene rearrangements using anti-ERG antibodies have been calculated at 95.7% and 96.5% (46).

PTEN genomic loss was identified as a driving molecular aberration in prostate cancer almost 15 years ago (62-64) and there is a large body of literature investigating the role of PTEN in tumorigenesis, cancer progression and response to cancer therapies. The reported frequency of PTEN deletion is variable between studies. A recent study from our group reported PTEN deletion in 17% of localized prostate cancers and 54% of metastatic cancers (48). Similarly, a study by Yoshimoto et al. reported PTEN genomic deletions in 68% of prostate cancers (54). Further, they attributed the variation in reported frequency of PTEN deletion in prostate cancer to differences in tissue preparation, stage of disease and the methodology used to detect molecular aberrations. Cases with intact genomic PTEN that results in negative PTEN immunohistochemisty may be due to the post-translational inactivation and inversion of PTEN region.

PTEN loss is more common in prostate cancer metastases than in primary tumors as reported by three independent studies, with the incidence of PTEN loss around 50%. (48, 65, 66). Loss of PTEN protein expression in prostate cancer has been correlated with poor prognosis and biochemical recurrence (67, 68). PTEN inactivation has been demonstrated to play an important role in progression to androgen-independence in prostate cancer (30, 69). Yoshimoto et al. suggested that the acquisition of the deletion and concomitant loss of PTEN functional activity at an earlier phase in prostatic oncogenesis is an important determinant of the molecular pathways that govern a more aggressive tumor phenotype (67). With biochemical recurrence as the end point, their group identified three patient groups using the following genomic markers: (1) ‘poor genomic grade’ characterized by both PTEN deletion and TMPRSS2:ERG fusion; (2) ‘intermediate genomic grade’ with either PTEN deletion or TMPRSS2:ERG fusion and (3) ‘favorable genomic grade’ in which neither rearrangement was present (44).

As reported by multiple studies, PTEN deletion itself represents an aggressive phenotype and in combination with TMPRSS2: ERG fusion is reported to have a ‘poor genomic grade’. The development of a dual color immunohistochemical assay for rapid, simultaneous evaluation of ERG and PTEN status in prostate cancer would enable better prediction of the course of the disease and identification and treatment of patients at higher risk. Simultaneous ERG and PTEN status detection in biopsies allows early detection in men harboring TMPRSS2:ERG rearrangement and PTEN inactivation with limited cancer on biopsy so they can pursue aggressive therapeutic options. This assay would be particularly advantageous for low-yield biopsy material as both ERG and PTEN status could be detected on a single section.

Our current study parallels a recent publication from our group that identified new methods to risk stratify and detect prostate cancer (70). The study demonstrated that quantitative measurement of TMPRSS2:ERG fusion transcript in urine in combination with urine prostate cancer antigen 3 (PCA3) improved the performance of the multivariate Prostate Cancer Prevention Trial (PCPT) risk calculator in predicting cancer on biopsy. Given that ERG rearrangement is present in a subset of high-grade prostatic intraepithelial neoplasia, the dual immunohistochemical ERG-PTEN assay may be helpful in risk stratifying the high-grade prostatic intraepithelial neoplasia on biopsies in those cases where high-grade intraepithelial neoplasia were the only significant finding. Future studies exploring this group will be required to assess the utility of dual ERG-PTEN status for risk stratification in high-grade intraepithelial neoplasia cases.

SPINK1 outlier expression was observed in ~10% of prostate cancers, is mutually exclusive with ETS gene fusions and was found to be associated with an aggressive outcome (17). A subsequent study suggested that SPINK1 in ETS-negative prostate cancers may be a promising therapeutic target (18). Hence, simultaneous detection of ERG rearrangement and SPINK1 status is important not only for molecular categorization of prostate carcinoma and identification of patients with a more aggressive outcome but also for identifying cancer patients who may benefit from emerging therapeutics. As discussed above, until recently ERG gene rearrangement status was assessed using FISH or reverse transcription polymerase chain reaction techniques. Recent studies utilizing novel anti-ERG monoclonal antibodies established the strong correlation between ERG gene rearrangement and positive immunohistochemisty staining (46, 55). Considering the combined incidence of about 50-60% of prostate cancer with ERG rearrangement and SPINK1 overexpression, we developed a rapid, reliable and simple immunohistochemical assay to simultaneously detect ERG and SPINK1 status of prostate cancer. This assay has clinical implications for early detection in biopsy and prostatectomy specimens. We optimized the new protocol on both needle biopsy (data not shown) and prostatectomy samples.

SPINK1 positivity was detected in 9% of the cases (26 of 284 patients) consistent with our previous study (17). No SPINK1 expression was noted in benign glandular tissue. We confirmed our earlier observation of mutual exclusivity of SPINK1 expression and ETS fusion status (17, 18). However we report for the first time, two cases with concomitant expression of ERG and SPINK1; in one case in the same focus of tumor and in the other in adjacent foci of same tumor nodule. These cases may represent a rare molecular subtype of prostate cancer and future studies in a large cohort are needed to explore the actual incidence and clinical significance of this subtype. Such observations can be attributed to the advantages of the new dual immunohistochemisty procedure presented in this study.

Although we performed the dual ERG-PTEN and ERG-SPINK1 immunohistochemisty assays using automated protocols, these assays are not restricted to automation; they can also be performed manually. The advantages of automated dual immunohistochemisty assays include simplicity, rapid turnover and consistency. The dual immunohistochemisty procedure takes on an average 4 to 5 hours and would be of great value to high volume laboratories in achieving fast turn-around time. Ours is the first study to report automated dual ERG-PTEN and ERG-SPINK1 immunohistochemisty to simultaneously detect ERG/PTEN and ERG/SPINK1 status in prostate carcinoma. These assays are simple, reliable, reproducible and easily portable to other laboratories. Antibody-based detection of PTEN and ERG shows a high concordance with FISH that offers a reliable alternative method for evaluating their status in prostate cancer. Similarly, we demonstrate that dual ERG-SPINK1 immunohistochemical assay is reproducible and highly sensitive for detecting small foci of SPINK1 expression. These assays will be useful for early screening for prostate cancer to select high risk patients for targeted therapies based on ERG, PTEN and SPINK1status. The dual staining methodology eliminates the need to perform the stain on two separate sections that can be of great value when biopsy samples are limited. Validation studies of this dual immunohistochemisty in prostate needle biopsies are underway. The assays have utility in retrospective or prospective studies for risk stratification of prostate cancer as well as prognostic and therapeutic decision-making purposes. Future studies using this novel dual immunohistochemistry assay will help to identify the incidence of the newly identified rare molecular subsets of prostate cancer with ERG-SPINK1 expression in the same or independent foci.


Supplementary Material material

Notes

FN1DISCLOSURE/CONFLICT OF INTEREST A.M.C. serves on the advisory boards of Gen-Probe, Inc. and Ventana Medical Systems, Inc./Roche. A.M.C. is also a co-inventor on a patent filed by the University of Michigan covering the diagnostic and therapeutic field of use for ETS fusions in prostate cancer. The diagnostic field of use has been licensed to Gen-Probe, Inc. Gen-Probe, Inc. and Ventana/Roche did not play a role in the design and conduct of this study, in the collection, analysis, or interpretation of the data, or in the preparation, review, or approval of the article. N.P. does receive research funding from Ventana/Roche but this funding did not play a part in development of the assay. J.M.M. holds a sponsored research agreement with Ventana/Roche, but this funding did not play a part in development of the assay. K.C., C.C., and G.P. are employees of Ventana/Roche and provided reagents and technical help for the development of this assay. The remaining authors declare no conflicts of interest.

ACKNOWLEDGEMENTS

This work was supported in part by the US National Institutes of Health Early Detection Research Network (U01 CA111275 and U01 CA113913), NIH S.P.O.R.E. (P50 CA69568), and R01 CA132874. N.P. is supported by a University of Michigan Prostate SPORE Career Development Award. A.M.C. is supported by the Howard Hughes Medical Institute, the Doris Duke Foundation and the Prostate Cancer Foundation and is an American Cancer Research Professor and a Taubman Scholar.

We thank Karen Giles and Jyoti Athanikar for critical reading and submission process of this manuscript.


REFERENCES
1. Tomlins SA,Rhodes DR,Perner S,Dhanasekaran SM,Mehra R,Sun XW,Varambally S,Cao X,Tchinda J,Kuefer R,Lee C,Montie JE,Shah RB,Pienta KJ,Rubin MA,Chinnaiyan AM. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancerScienceYear: 200531064464816254181
2. Tomlins SA,Mehra R,Rhodes DR,Smith LR,Roulston D,Helgeson BE,Cao X,Wei JT,Rubin MA,Shah RB,Chinnaiyan AM. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancerCancer ResYear: 2006663396340016585160
3. Helgeson BE,Tomlins SA,Shah N,Laxman B,Cao Q,Prensner JR,Cao X,Singla N,Montie JE,Varambally S,Mehra R,Chinnaiyan AM. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancerCancer ResYear: 200868738018172298
4. Hermans KG,Bressers AA,van der Korput HA,Dits NF,Jenster G,Trapman J. Two unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in prostate cancerCancer ResYear: 2008683094309818451133
5. Attard G,Clark J,Ambroisine L,Mills IG,Fisher G,Flohr P,Reid A,Edwards S,Kovacs G,Berney D,Foster C,Massie CE,Fletcher A,De Bono JS,Scardino P,Cuzick J,Cooper CS. Heterogeneity and clinical significance of ETV1 translocations in human prostate cancerBr J CancerYear: 20089931432018594527
6. Tomlins SA,Laxman B,Dhanasekaran SM,Helgeson BE,Cao X,Morris DS,Menon A,Jing X,Cao Q,Han B,Yu J,Wang L,Montie JE,Rubin MA,Pienta KJ,Roulston D,Shah RB,Varambally S,Mehra R,Chinnaiyan AM. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancerNatureYear: 200744859559917671502
7. Han B,Mehra R,Dhanasekaran SM,Yu J,Menon A,Lonigro RJ,Wang X,Gong Y,Wang L,Shankar S,Laxman B,Shah RB,Varambally S,Palanisamy N,Tomlins SA,Kumar-Sinha C,Chinnaiyan AM. A fluorescence in situ hybridization screen for E26 transformation-specific aberrations: identification of DDX5-ETV4 fusion protein in prostate cancerCancer ResYear: 2008687629763718794152
8. Kumar-Sinha C,Tomlins SA,Chinnaiyan AM. Recurrent gene fusions in prostate cancerNat Rev CancerYear: 2008849751118563191
9. Clark JP,Cooper CS. ETS gene fusions in prostate cancerNat Rev UrolYear: 2009642943919657377
10. Mosquera JM,Perner S,Genega EM,Sanda M,Hofer MD,Mertz KD,Paris PL,Simko J,Bismar TA,Ayala G,Shah RB,Loda M,Rubin MA. Characterization of TMPRSS2-ERG fusion high-grade prostatic intraepithelial neoplasia and potential clinical implicationsClin Cancer ResYear: 2008143380338518519767
11. Cerveira N,Ribeiro FR,Peixoto A,Costa V,Henrique R,Jeronimo C,Teixeira MR. TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesionsNeoplasiaYear: 2006882683217032499
12. Clark J,Merson S,Jhavar S,Flohr P,Edwards S,Foster CS,Eeles R,Martin FL,Phillips DH,Crundwell M,Christmas T,Thompson A,Fisher C,Kovacs G,Cooper CS. Diversity of TMPRSS2-ERG fusion transcripts in the human prostateOncogeneYear: 2007262667267317043636
13. Perner S,Demichelis F,Beroukhim R,Schmidt FH,Mosquera JM,Setlur S,Tchinda J,Tomlins SA,Hofer MD,Pienta KG,Kuefer R,Vessella R,Sun XW,Meyerson M,Lee C,Sellers WR,Chinnaiyan AM,Rubin MA. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancerCancer ResYear: 2006668337834116951139
14. Perner S,Mosquera JM,Demichelis F,Hofer MD,Paris PL,Simko J,Collins C,Bismar TA,Chinnaiyan AM,De Marzo AM,Rubin MA. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasionAm J Surg PatholYear: 20073188288817527075
15. Mehra R,Tomlins SA,Yu J,Cao X,Wang L,Menon A,Rubin MA,Pienta KJ,Shah RB,Chinnaiyan AM. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancerCancer ResYear: 2008683584359018483239
16. Tomlins SA,Bjartell A,Chinnaiyan AM,Jenster G,Nam RK,Rubin MA,Schalken JA. ETS gene fusions in prostate cancer: from discovery to daily clinical practiceEur UrolYear: 20095627528619409690
17. Tomlins SA,Rhodes DR,Yu J,Varambally S,Mehra R,Perner S,Demichelis F,Helgeson BE,Laxman B,Morris DS,Cao Q,Cao X,Andren O,Fall K,Johnson L,Wei JT,Shah RB,Al-Ahmadie H,Eastham JA,Eggener SE,Fine SW,Hotakainen K,Stenman UH,Tsodikov A,Gerald WL,Lilja H,Reuter VE,Kantoff PW,Scardino PT,Rubin MA,Bjartell AS,Chinnaiyan AM. The role of SPINK1 in ETS rearrangement-negative prostate cancersCancer CellYear: 20081351952818538735
18. Ateeq B,Tomlins SA,Laxman B,Asangani IA,Cao Q,Cao X,Li Y,Wang X,Feng FY,Pienta KJ,Varambally S,Chinnaiyan AM. Therapeutic targeting of SPINK1-positive prostate cancerSci Transl MedYear: 2011372ra17
19. Palanisamy N,Ateeq B,Kalyana-Sundaram S,Pflueger D,Ramnarayanan K,Shankar S,Han B,Cao Q,Cao X,Suleman K,Kumar-Sinha C,Dhanasekaran SM,Chen YB,Esgueva R,Banerjee S,LaFargue CJ,Siddiqui J,Demichelis F,Moeller P,Bismar TA,Kuefer R,Fullen DR,Johnson TM,Greenson JK,Giordano TJ,Tan P,Tomlins SA,Varambally S,Rubin MA,Maher CA,Chinnaiyan AM. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanomaNat MedYear: 20101679379820526349
20. Di Cristofano A,Pandolfi PP. The multiple roles of PTEN in tumor suppressionCellYear: 200010038739010693755
21. Besson A,Robbins SM,Yong VW. PTEN/MMAC1/TEP1 in signal transduction and tumorigenesisEur J BiochemYear: 199926360561110469123
22. Goberdhan DC,Wilson C. PTEN: tumour suppressor, multifunctional growth regulator and moreHum Mol Genet 12 Spec NoYear: 20032R239248
23. Datta SR,Dudek H,Tao X,Masters S,Fu H,Gotoh Y,Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machineryCellYear: 1997912312419346240
24. Cardone MH,Roy N,Stennicke HR,Salvesen GS,Franke TF,Stanbridge E,Frisch S,Reed JC. Regulation of cell death protease caspase-9 by phosphorylationScienceYear: 1998282131813219812896
25. Ashcroft M,Ludwig RL,Woods DB,Copeland TD,Weber HO,MacRae EJ,Vousden KH. Phosphorylation of HDM2 by AktOncogeneYear: 2002211955196211960368
26. Majumder PK,Febbo PG,Bikoff R,Berger R,Xue Q,McMahon LM,Manola J,Brugarolas J,McDonnell TJ,Golub TR,Loda M,Lane HA,Sellers WR. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathwaysNat MedYear: 20041059460115156201
27. Brunet A,Bonni A,Zigmond MJ,Lin MZ,Juo P,Hu LS,Anderson MJ,Arden KC,Blenis J,Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factorCellYear: 19999685786810102273
28. Graff JR,Konicek BW,McNulty AM,Wang Z,Houck K,Allen S,Paul JD,Hbaiu A,Goode RG,Sandusky GE,Vessella RL,Neubauer BL. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expressionJ Biol ChemYear: 2000275245002450510827191
29. Koksal IT,Dirice E,Yasar D,Sanlioglu AD,Ciftcioglu A,Gulkesen KH,Ozes NO,Baykara M,Luleci G,Sanlioglu S. The assessment of PTEN tumor suppressor gene in combination with Gleason scoring and serum PSA to evaluate progression of prostate carcinomaUrol OncolYear: 20042230731215283888
30. Bertram J,Peacock JW,Fazli L,Mui AL,Chung SW,Cox ME,Monia B,Gleave ME,Ong CJ. Loss of PTEN is associated with progression to androgen independenceProstateYear: 20066689590216496415
31. Demichelis F,Fall K,Perner S,Andren O,Schmidt F,Setlur SR,Hoshida Y,Mosquera JM,Pawitan Y,Lee C,Adami HO,Mucci LA,Kantoff PW,Andersson SO,Chinnaiyan AM,Johansson JE,Rubin MA. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohortOncogeneYear: 2007264596459917237811
32. Rajput AB,Miller MA,De Luca A,Boyd N,Leung S,Hurtado-Coll A,Fazli L,Jones EC,Palmer JB,Gleave ME,Cox ME,Huntsman DG. Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancersJ Clin PatholYear: 2007601238124317259299
33. Mehra R,Tomlins SA,Shen R,Nadeem O,Wang L,Wei JT,Pienta KJ,Ghosh D,Rubin MA,Chinnaiyan AM,Shah RB. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancerMod PatholYear: 20072053854417334343
34. Cheville JC,Karnes RJ,Therneau TM,Kosari F,Munz JM,Tillmans L,Basal E,Rangel LJ,Bergstralh E,Kovtun IV,Savci-Heijink CD,Klee EW,Vasmatzis G. Gene panel model predictive of outcome in men at high-risk of systemic progression and death from prostate cancer after radical retropubic prostatectomyJ Clin OncolYear: 2008263930393618711181
35. Nam RK,Sugar L,Wang Z,Yang W,Kitching R,Klotz LH,Venkateswaran V,Narod SA,Seth A. Expression of TMPRSS2:ERG gene fusion in prostate cancer cells is an important prognostic factor for cancer progressionCancer Biol TherYear: 20076404517172822
36. Nam RK,Sugar L,Yang W,Srivastava S,Klotz LH,Yang LY,Stanimirovic A,Encioiu E,Neill M,Loblaw DA,Trachtenberg J,Narod SA,Seth A. Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancerBr J CancerYear: 2007971690169517971772
37. Dai MJ,Chen LL,Zheng YB,Chen W,Tao ZH,Weng ZL,Wu XL,Li CD,Chen ZG,Chen XD,Shi SB. [Frequency and transcript variant analysis of gene fusions between TMPRSS2 and ETS transcription factor genes in prostate cancer]Zhonghua Yi Xue Za ZhiYear: 20088866967318642766
38. Rouzier C,Haudebourg J,Carpentier X,Valerio L,Amiel J,Michiels JF,Pedeutour F. Detection of the TMPRSS2-ETS fusion gene in prostate carcinomas: retrospective analysis of 55 formalin-fixed and paraffin-embedded samples with clinical dataCancer Genet CytogenetYear: 2008183212718474293
39. Gopalan A,Leversha MA,Satagopan JM,Zhou Q,Al-Ahmadie HA,Fine SW,Eastham JA,Scardino PT,Scher HI,Tickoo SK,Reuter VE,Gerald WL. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomyCancer ResYear: 2009691400140619190343
40. Yoshimoto M,Joshua AM,Chilton-Macneill S,Bayani J,Selvarajah S,Evans AJ,Zielenska M,Squire JA. Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangementNeoplasiaYear: 2006846546916820092
41. Lapointe J,Kim YH,Miller MA,Li C,Kaygusuz G,van de Rijn M,Huntsman DG,Brooks JD,Pollack JR. A variant TMPRSS2 isoform and ERG fusion product in prostate cancer with implications for molecular diagnosisMod PatholYear: 20072046747317334351
42. Darnel AD,Lafargue CJ,Vollmer RT,Corcos J,Bismar TA. TMPRSS2-ERG fusion is frequently observed in Gleason pattern 3 prostate cancer in a Canadian cohortCancer Biol TherYear: 2009812513019029822
43. Saramaki OR,Harjula AE,Martikainen PM,Vessella RL,Tammela TL,Visakorpi T. TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosisClin Cancer ResYear: 2008143395340018519769
44. Yoshimoto M,Joshua AM,Cunha IW,Coudry RA,Fonseca FP,Ludkovski O,Zielenska M,Soares FA,Squire JA. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcomeMod PatholYear: 2008211451146018500259
45. Rubin MA,Maher CA,Chinnaiyan AM. Common gene rearrangements in prostate cancerJ Clin OncolYear: 2011293659366821859993
46. Park K,Tomlins SA,Mudaliar KM,Chiu YL,Esgueva R,Mehra R,Suleman K,Varambally S,Brenner JC,MacDonald T,Srivastava A,Tewari AK,Sathyanarayana U,Nagy D,Pestano G,Kunju LP,Demichelis F,Chinnaiyan AM,Rubin MA. Antibody-based detection of ERG rearrangement-positive prostate cancerNeoplasiaYear: 20101259059820651988
47. Falzarano SM,Zhou M,Carver P,Tsuzuki T,Simmerman K,He H,Magi-Galluzzi C. ERG gene rearrangement status in prostate cancer detected by immunohistochemistryVirchows ArchYear: 201145944144721773753
48. Han B,Mehra R,Lonigro RJ,Wang L,Suleman K,Menon A,Palanisamy N,Tomlins SA,Chinnaiyan AM,Shah RB. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progressionMod PatholYear: 2009221083109319407851
49. Lotan TL,Gurel B,Sutcliffe S,Esopi D,Liu W,Xu J,Hicks JL,Park BH,Humphreys E,Partin AW,Han M,Netto GJ,Isaacs WB,De Marzo AM. PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patientsClin Cancer ResYear: 2011176563657321878536
50. Leinonen KA,Tolonen TT,Bracken H,Stenman UH,Tammela TL,Saramaki OR,Visakorpi T. Association of SPINK1 expression and TMPRSS2:ERG fusion with prognosis in endocrine-treated prostate cancerClin Cancer ResYear: 2010162845285120442300
51. Han B,Mehra R,Suleman K,Tomlins SA,Wang L,Singhal N,Linetzky KA,Palanisamy N,Zhou M,Chinnaiyan AM,Shah RB. Characterization of ETS gene aberrations in select histologic variants of prostate carcinomaMod PatholYear: 2009221176118519465903
52. Yaskiv O,Zhang X,Simmerman K,Daly T,He H,Falzarano S,Chen L,Magi-Galluzzi C,Zhou M. The utility of ERG/P63 double immunohistochemical staining in the diagnosis of limited cancer in prostate needle biopsiesAm J Surg PatholYear: 2011351062106821623182
53. He H,Magi-Galluzzi C,Li J,Carver P,Falzarano S,Smith K,Rubin MA,Zhou M. The diagnostic utility of novel immunohistochemical marker ERG in the workup of prostate biopsies with “atypical glands suspicious for cancer”Am J Surg PatholYear: 20113560861421383613
54. Yoshimoto M,Cutz JC,Nuin PA,Joshua AM,Bayani J,Evans AJ,Zielenska M,Squire JA. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68% of primary prostate cancer and 23% of high-grade prostatic intra-epithelial neoplasiasCancer Genet CytogenetYear: 200616912813716938570
55. Furusato B,Tan SH,Young D,Dobi A,Sun C,Mohamed AA,Thangapazham R,Chen Y,McMaster G,Sreenath T,Petrovics G,McLeod DG,Srivastava S,Sesterhenn IA. ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratificationProstate Cancer Prostatic DisYear: 20101322823720585344
56. Chaux A,Albadine R,Toubaji A,Hicks J,Meeker A,Platz EA,De Marzo AM,Netto GJ. Immunohistochemistry for ERG expression as a surrogate for TMPRSS2-ERG fusion detection in prostatic adenocarcinomasAm J Surg PatholYear: 2011351014102021677539
57. Mehra R,Han B,Tomlins SA,Wang L,Menon A,Wasco MJ,Shen R,Montie JE,Chinnaiyan AM,Shah RB. Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseasesCancer ResYear: 2007677991799517804708
58. Barry M,Perner S,Demichelis F,Rubin MA. TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implicationsUrologyYear: 20077063063317991527
59. Sangale Z,Prass C,Carlson A,Tikishvili E,Degrado J,Lanchbury J,Stone S. A robust immunohistochemical assay for detecting PTEN expression in human tumorsAppl Immunohistochem Mol MorpholYear: 20111917318320930614
60. Esgueva R,Perner S,C JL,Scheble V,Stephan C,Lein M,Fritzsche FR,Dietel M,Kristiansen G,Rubin MA. Prevalence of TMPRSS2-ERG and SLC45A3-ERG gene fusions in a large prostatectomy cohortMod PatholYear: 20102353954620118910
61. Scheble VJ,Braun M,Beroukhim R,Mermel CH,Ruiz C,Wilbertz T,Stiedl AC,Petersen K,Reischl M,Kuefer R,Schilling D,Fend F,Kristiansen G,Meyerson M,Rubin MA,Bubendorf L,Perner S. ERG rearrangement is specific to prostate cancer and does not occur in any other common tumorMod PatholYear: 2010231061106720473283
62. Cairns P,Okami K,Halachmi S,Halachmi N,Esteller M,Herman JG,Jen J,Isaacs WB,Bova GS,Sidransky D. Frequent inactivation of PTEN/MMAC1 in primary prostate cancerCancer ResYear: 199757499750009371490
63. Li J,Yen C,Liaw D,Podsypanina K,Bose S,Wang SI,Puc J,Miliaresis C,Rodgers L,McCombie R,Bigner SH,Giovanella BC,Ittmann M,Tycko B,Hibshoosh H,Wigler MH,Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancerScienceYear: 1997275194319479072974
64. Steck PA,Pershouse MA,Jasser SA,Yung WK,Lin H,Ligon AH,Langford LA,Baumgard ML,Hattier T,Davis T,Frye C,Hu R,Swedlund B,Teng DH,Tavtigian SV. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancersNat GenetYear: 1997153563629090379
65. Suzuki H,Freije D,Nusskern DR,Okami K,Cairns P,Sidransky D,Isaacs WB,Bova GS. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissuesCancer ResYear: 1998582042099443392
66. Taylor BS,Schultz N,Hieronymus H,Gopalan A,Xiao Y,Carver BS,Arora VK,Kaushik P,Cerami E,Reva B,Antipin Y,Mitsiades N,Landers T,Dolgalev I,Major JE,Wilson M,Socci ND,Lash AE,Heguy A,Eastham JA,Scher HI,Reuter VE,Scardino PT,Sander C,Sawyers CL,Gerald WL. Integrative genomic profiling of human prostate cancerCancer CellYear: 201018112220579941
67. Yoshimoto M,Cunha IW,Coudry RA,Fonseca FP,Torres CH,Soares FA,Squire JA. FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcomeBr J CancerYear: 20079767868517700571
68. Bedolla R,Prihoda TJ,Kreisberg JI,Malik SN,Krishnegowda NK,Troyer DA,Ghosh PM. Determining risk of biochemical recurrence in prostate cancer by immunohistochemical detection of PTEN expression and Akt activationClin Cancer ResYear: 2007133860386717606718
69. Jiao J,Wang S,Qiao R,Vivanco I,Watson PA,Sawyers CL,Wu H. Murine cell lines derived from Pten null prostate cancer show the critical role of PTEN in hormone refractory prostate cancer developmentCancer ResYear: 2007676083609117616663
70. Cao Q,Mani RS,Ateeq B,Dhanasekaran SM,Asangani IA,Prensner JR,Kim JH,Brenner JC,Jing X,Cao X,Wang R,Li Y,Dahiya A,Wang L,Pandhi M,Lonigro RJ,Wu YM,Tomlins SA,Palanisamy N,Qin Z,Yu J,Maher CA,Varambally S,Chinnaiyan AM. Coordinated regulation of polycomb group complexes through microRNAs in cancerCancer CellYear: 20112018719921840484

Article Categories:
  • Article

Keywords: Prostate cancers, Immunohistochemistry, Fluorescent in situ hybridization, Tissue Microarray.

Previous Document:  Collagenous colitis in children and adolescents: study of 7 cases and literature review.
Next Document:  Prostate cancer cell phenotypes based on AGR2 and CD10 expression.