Document Detail

Noninvasive functional imaging of cerebral blood volume with vascular-space-occupancy (VASO) MRI.
MedLine Citation:
PMID:  23355392     Owner:  NLM     Status:  Publisher    
Functional MRI (fMRI) based on changes in cerebral blood volume (CBV) can probe directly vasodilatation and vasoconstriction during brain activation or physiologic challenges, and can provide important insights into the mechanism of blood oxygenation level-dependent (BOLD) signal changes. At present, the most widely used CBV fMRI technique in humans is called vascular-space-occupancy (VASO) MRI, and this article provides a technical review of this method. VASO MRI utilizes T(1) differences between blood and tissue to distinguish between these two compartments within a voxel, and employs a blood-nulling inversion recovery sequence to yield an MR signal proportional to 1 - CBV. As such, vasodilatation will result in a VASO signal decrease and vasoconstriction will have the reverse effect. The VASO technique can be performed dynamically with a temporal resolution comparable with several other fMRI methods, such as BOLD or arterial spin labeling (ASL), and is particularly powerful when conducted in conjunction with these complementary techniques. The pulse sequence and imaging parameters of VASO can be optimized such that the signal change is predominantly of CBV origin, but careful considerations should be taken to minimize other contributions, such as those from the BOLD effect, cerebral blood flow (CBF) and cerebrospinal fluid (CSF). The sensitivity of the VASO technique is the primary disadvantage when compared with BOLD, but this technique is increasingly demonstrating its utility in neuroscientific and clinical applications. Copyright © 2013 John Wiley & Sons, Ltd.
Hanzhang Lu; Jun Hua; Peter C M van Zijl
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-28
Journal Detail:
Title:  NMR in biomedicine     Volume:  -     ISSN:  1099-1492     ISO Abbreviation:  NMR Biomed     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-28     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8915233     Medline TA:  NMR Biomed     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2013 John Wiley & Sons, Ltd.
Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Nanoscale Assembly of Paramagnetic Organic Radicals on Au(111) Single Crystals.
Next Document:  One Way and the Other: The Bidirectional Relationship Between Ambivalence and Body Movement.