Document Detail

Non-alcoholic Fatty liver disease: the bile Acid-activated farnesoid x receptor as an emerging treatment target.
Jump to Full Text
MedLine Citation:
PMID:  22187656     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
Non-alcoholic fatty liver disease (NAFLD) is currently evolving as the most common liver disease worldwide. It may progress to liver cirrhosis and liver cancer and is poised to represent the most common indication for liver transplantation in the near future. The pathogenesis of NAFLD is multifactorial and not fully understood, but it represents an insulin resistance state characterized by a cluster of cardiovascular risk factors including obesity, dyslipidemia, hyperglycemia, and hypertension. Importantly, NAFLD also has evolved as independent risk factor for cardiovascular disease. Unfortunately thus far no established treatment does exist for NAFLD. The bile acid-activated nuclear farnesoid X receptor (FXR) has been shown to play a role not only in bile acid but also in lipid and glucose homeostasis. Specific targeting of FXR may be an elegant and very effective way to readjust dysregulated nuclear receptor-mediated metabolic pathways. This review discusses the body's complex response to the activation of FXR with its beneficial actions but also potential undesirable side effects.
Authors:
Michael Fuchs
Related Documents :
8317196 - Potential role for arachidonic acid and eicosanoids in modulating progesterone secretio...
9088546 - Arachidonic acid activation of monocyte and neutrophil reactive oxygen in lung cancer p...
8022846 - Oxygenation of polyunsaturated fatty acids by cytochrome p450 monooxygenases.
3130056 - Adenosine inhibits phenylephrine activation of phospholipase a in hamster brown adipocy...
2166156 - Killing of coccidioides immitis by hypochlorous acid or monochloramine.
23648406 - Novel compound, (2z,6e)-1-hydroxy-3,7-dimethyl-2,6-octadien-8-oic acid produced from bi...
Publication Detail:
Type:  Journal Article     Date:  2011-12-07
Journal Detail:
Title:  Journal of lipids     Volume:  2012     ISSN:  2090-3049     ISO Abbreviation:  J Lipids     Publication Date:  2012  
Date Detail:
Created Date:  2011-12-21     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101553819     Medline TA:  J Lipids     Country:  Egypt    
Other Details:
Languages:  eng     Pagination:  934396     Citation Subset:  -    
Affiliation:
Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, P.O. Box 980341, Richmond, VA 23298-0341, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): J Lipids
Journal ID (publisher-id): JL
ISSN: 2090-3030
ISSN: 2090-3049
Publisher: Hindawi Publishing Corporation
Article Information
Download PDF
Copyright © 2012 Michael Fuchs.
open-access:
Received Day: 18 Month: 8 Year: 2011
Accepted Day: 18 Month: 9 Year: 2011
Print publication date: Year: 2012
Electronic publication date: Day: 7 Month: 12 Year: 2011
Volume: 2012E-location ID: 934396
ID: 3236512
PubMed Id: 22187656
DOI: 10.1155/2012/934396

Non-Alcoholic Fatty Liver Disease: The Bile Acid-Activated Farnesoid X Receptor as an Emerging Treatment Target
Michael FuchsI1*
Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, P.O. Box 980341, Richmond, VA 23298-0341, USA
Correspondence: *Michael Fuchs: mfuchs@vcu.edu
[other] Academic Editor: Piero Portincasa

1. Introduction

One characteristic of our modern civilization is the easy and unlimited access to unhealthy and caloric dense food. A typical American diet furnishes the liver with ~20 g of fat each day, equivalent to one-half of the total triglyceride content of the liver. In combination with little need for physical activity due to technological advances, one consequence of our sedentary and excessive lifestyle is non-alcoholic fatty liver disease (NAFLD).

NAFLD is a major health problem affecting up to 60 million Americans and evolving as the most common liver disease worldwide [1, 2]. This is several-fold higher than other common chronic liver diseases such as hepatitis C and alcohol-related liver disease. While the majority of subjects with NAFLD are obese, the condition can occur in the absence of obesity or other features of the metabolic syndrome. In patients with diabetes and morbid obesity the prevalence of NAFLD has been shown to be as high as 62% and 96%, respectively [3, 4].

The earliest stage of NAFLD is fatty liver that is defined as the presence of cytoplasmic triglyceride droplets in more than 5% of hepatocytes [5]. Although often self-limited, in 12–40% it can progress to non-alcoholic steatohepatitis (NASH) [6]. NASH is distinguished from simple fatty liver by the presence of hepatocyte injury such as hepatocyte ballooning and apoptosis, an inflammatory infiltrate, and/or collagen deposition. Over a time period of 10–15 years, 15% of patients with NASH will progress to liver cirrhosis [7]. Once cirrhosis has developed in the absence of viral hepatitis, hepatic decompensation occurs at a rate of 4% annually while the ten-year risk of developing liver cancer is 10% [7, 8]. Although liver cancer secondary to NASH typically develops in the setting of cirrhosis, carcinogenesis can occur in the absence of advanced liver disease. It is thus not surprising that NAFLD is poised to become the primary indication for liver transplantations. Like other causes of chronic liver disease, NASH recurs following liver transplantation almost universally [9].


2. Basic Pathophysiological Concepts and Treatment of NAFLD

The pathogenesis of NAFLD is multifactorial and only partially understood. Fatty liver arises in the setting of an imbalance between triglyceride formation/acquisition and removal (Figure 1). Assembly of triglycerides and lipid droplet formation requires fatty acids that can derive from diet, de novo synthesis, or adipose tissue. Dietary fat packed in chylomicrons is hydrolyzed releasing free fatty acids of which approximately 20% are delivered to the liver [8]. Carbohydrate-enriched diets promote de novo synthesis of free fatty acids via insulin-stimulated activation of sterol regulatory element-binding protein-1c [10, 11]. In addition, glucose facilitates lipogenesis via activation of carbohydrate responsive element-binding protein [12]. In the fasting state, a decline of insulin levels stimulates adipocyte triglyceride hydrolase thereby releasing free fatty acids that are transported to the liver [13]. In the liver, free fatty acids can be (i) used for energy and ketone body production via mitochondrial β-oxidation, (ii) esterified and stored as triglycerides in lipid droplets, or (iii) packaged with apolipoprotein B into very low-density lipoproteins that are secreted into the circulation. As the liver extracts approximately 20% of free fatty acids from the circulation, the daily input of triglycerides from diet and fatty acids from adipocyte tissue is equivalent to the entire triglyceride content of the liver [14]. Once the capacity of the liver to store fatty acids in form of triglycerides is overwhelmed, NASH, differentiated from a fatty liver by the presence of increased cell injury, apoptosis, inflammation, and fibrosis, starts to develop. A detailed review of the steps involved in the progression of NAFLD to NASH and cirrhosis has been recently published [15].

Treatment of NAFLD should either prevent disease progression to liver cirrhosis or reverse already established NASH, respectively. Despite many advances in our understanding of the pathogenesis of NAFLD, there is currently no established treatment available. Life-style changes and exercise to reduce body weight and treatment of concomitant diabetes and dyslipidemia are accepted first-line therapy but have not been shown to convincingly reduce the risk of disease progression [16]. Therefore exploring new avenues for treatment of this common disease is crucial.


3. The Bile Acid-Activated Nuclear Farnesoid X Receptor (FXR)

Nuclear receptors are a group of transcription factors that consist of 48 members in humans. They have a common structure consisting of a ligand-independent activation domain for interaction with cofactors, a central DNA binding domain, and a unique ligand binding domain allowing receptor dimerization and coregulator interactions. Most nuclear receptors function either as homodimers or as heterodimers with the retinoid X receptor. Binding of the ligand promotes conformational changes facilitating the release of corepressors and resulting in conformational changes of chromatin enabling access of the transcriptional machinery to the respective promoters. Upon ligand activation, the corepressor complex dissociates and the coactivator complex is recruited allowing start of transcription. Control of nuclear transcriptional activity is also thought to occur by posttranslational modifications [1719].

In 1995 a protein was discovered that was interacting with the human retinoic X receptor and named retinoic X receptor-interacting protein 14 [20]. Because it was activated by an intermediate of the mevalonate pathway, farnesol, it was renamed to farnesoid X receptor [21]. Another four years later, three independent groups [2224] discovered bile acids as endogenous ligands for FXR. From an evolutionary point of view the FXR gene is highly conserved suggesting that it plays an important role in many species. At the tissue level, FXR is expressed predominantly in the liver, intestine, kidney, and adrenal gland. Expression in heart and adipose tissue is low [25]. The generation of mice with Fxr gene ablation identified FXR as a master regulator in bile acid homeostasis [26]. Subsequently novel functions of FXR have been identified including protecting the intestinal barrier and modulating the innate immunity [27, 28] and tumorigenesis [29, 30]. The most important roles of FXR are likely in regulating metabolic processes.


4. FXR as Key Player in Multiple Metabolic Processes

For a long time, physiological effects of bile acids have mainly been attributed to their physicochemical properties [31]. In the last couple of years it has been evident that bile acids act like signaling molecules [32] regulating not only their own homeostasis during the enterohepatic circulation but also triglyceride, cholesterol, and glucose metabolism.

4.1. Bile Acid Metabolism

A major physiological role of FXR in bile acid metabolism is to protect hepatocytes from the deleterious effects of increased bile acid levels by inhibiting endogenous bile acid synthesis and accelerating bile acid biotransformation and excretion. In this regard, FXR-mediated effects occur in a tightly coordinated fashion at the level of the hepatocyte and enterocyte and have been reviewed in detail elsewhere [33].

4.2. Triglyceride and Cholesterol Metabolism

It has been known for years that bile acids can modulate lipid metabolism in humans. Reducing the transhepatic flux of bile acids decreases low-density lipoprotein cholesterol and increases high-density lipoprotein cholesterol and very low-density lipoprotein triglyceride levels. Opposite effects are observed when the bile acid pool is expanded [3436]. Studies in mice with Fxr gene ablation or administering FXR agonists provided key information demonstrating a central role of FXR in lipid homeostasis.

As illustrated in Figure 2, FXR activation of short heterodimer partner is required to suppress sterol regulatory element-binding protein 1c expression [37]. As sterol regulatory element-binding protein 1c is known to regulate several genes involved in fatty acid and triglyceride formation [11], FXR-mediated repression of sterol regulatory element-binding protein 1c inhibits triglyceride and fatty acid synthesis and secretion. Interestingly, recent studies support the concept that FXR-independent mechanisms may also contribute [38]. In addition to decreasing lipogenesis, activation of FXR facilitates the clearance of very low-density lipoproteins and chylomicrons. This is achieved by increasing the expression of the very low-density lipoprotein receptor [39], a protein that enhances lipoprotein lipase-mediated triacylglycerol hydrolysis. Very low-density lipoprotein assembly is controlled by FXR via repressing the expression of microsomal triglyceride transfer protein and apolipoprotein B [38]. FXR also activates syndecan-1, a transmembrane protein that binds remnant particles before their transfer to receptors [40]. Activation of lipoprotein lipase, a key enzyme involved in the lipolysis of triglyceride rich lipoproteins, is also FXR-dependent. This involves activation of apolipoproteins C-II and AIV [4143] and inhibiting the expression of apolipoprotein C-III [44] and angiopoetin-like 3 [37], respectively. Another effect of FXR activation is the induction of peroxisome proliferator-activated receptor α that promotes fatty acid β-oxidation [45]. Collectively these findings support the concept that FXR activation decreases plasma triglyceride levels by suppressing hepatic lipogenesis and triglyceride secretion and increasing the clearance of triglyceride-rich lipoproteins from blood. These observations therefore support the concept that FXR activation may have a beneficial effect in patients with NAFLD by decreasing hepatic lipogenesis.

Activation of FXR also modulates the reverse cholesterol transport, a pathway that promotes cholesterol delivery from the periphery to the liver for biliary disposal and fecal elimination. In this scenario, the selective uptake of high-density lipoprotein cholesteryl ester via scavenger receptor BI [46], intracellular cholesteryl ester hydrolysis facilitated by neutral cholesteryl ester hydrolase [47], as well as the canalicular routing of cholesterol by sterol carrier protein 2 [48] for biliary excretion via adenosine triphosphate binding cassette subfamily G member 5/8 [49] are positively regulated by FXR [50]. In addition but controversial, FXR appears to suppress apolipoprotein A-I expression [46, 50, 51], the primary protein constituent of high-density lipoprotein defining its size and shape. This may be of particular importance as it could influence the capability of high-density lipoprotein to remove cholesterol from peripheral cells, activating the lecithin-cholesterol acyl transferase enzyme and delivering the resulting cholesteryl ester to the liver. Another target of FXR is paraoxonase 1, a protein produced in the liver with phospholipase A2 activity that may be important for inactivation of proatherogenic lipids produced by oxidative modification of low-density lipoprotein. FXR-mediated repression of paraoxonase 1 involves the induction of fibroblast growth factor 19, its subsequent binding to the fibroblast growth factor receptor 4, and activation of the c-Jun N-terminal kinase pathway [52, 53]. FXR also regulates the expression of phospholipid transfer protein [54] that is responsible for the transfer of phospholipids and cholesterol from low to high-density lipoprotein and suppresses 3-hydroxy-3-methyl-glutaryl-CoA reductase likely involving sterol regulatory element-binding protein 2 [55]. Finally, FXR represses proprotein convertase subtilisin/kexin 9 [56], a protein that promotes the intracellular degradation of the low-density lipoprotein receptor by interfering with its recycling to the plasma membrane. In summary, these findings raise concern that activation of FXR may alter the cholesterol metabolism in a way that increases the susceptibility to atherosclerosis and thus limit its application in patients with NAFLD.

4.3. Glucose Homeostasis

In addition to their pleiotropic effects on lipid metabolism, bile acids also affect glucose homeostasis. This is supported by an improved glycemic control in patients with diabetes mellitus response to cholestyramine [57]. Several studies addressed the role of bile acids and FXR activation in glucose metabolism, but the underlying mechanisms are far from being understood. It appears clear that FXR exerts a role in glucose homeostasis [58]. In the state of Fxr gene ablation, the failure to suppress gluconeogenesis and a reduced peripheral glucose disposal led to glucose intolerance [5961]. A potential molecular basis for these observations is the suppression of hepatic phosphenoyl-pyruvate carboxykinase and glucose 6-phosphatase [60, 62]. Reduced plasma levels of free fatty acids in response to FXR activation (see above) may explain the increased insulin sensitivity in the liver. Of note, FXR activation was shown to enhance insulin-stimulated glucose uptake as well as insulin signaling in adipocytes [61]. It should be noted that bile acids also modulate glucose homeostasis in an FXR-independent fashion through cell signaling pathways [63]. Collectively these findings suggest that FXR activation might prove useful in the treatment of hyperglycemia and hyperlipidemia that are present in patients with NAFLD.

4.4. Hepatic Inflammation and Fibrogenesis

Inflammation and collagen deposition in the liver are key histopathological features of NASH. FXR appears to antagonize hepatic inflammatory processes by antagonizing the nuclear factor kappa B pathway [64]. Another protective FXR mechanism involves induction of antimicrobial factors in the intestine [65]. As FXR is expressed in rodent hepatic stellate cells that play a critical role in hepatic fibrosis, it is not surprising that FXR agonists protect against liver fibrosis [66]. This appears to be mediated by a decreased hepatic expression of various profibrotic growth factors including transforming growth factor β1, tissue inhibitor of metalloproteinase 1, α1(I) collagen, α smooth muscle actin, matrix metalloproteinase 2 and α2(I) collagen, and microRNA-29a [6769]. However, if this mechanism is also operational in humans with a lower expression level of FXR remains to be determined [70]. These data suggest that targeting FXR may impact progression from NAFLD to NASH.


5. FXR and Atherosclerosis

As demonstrated earlier in this article and illustrated in Figure 3, activation of FXR seems to be associated with both anti- and proatherogenic properties. In addition to its impact on dyslipidemia and hyperglycemia, FXR may also directly act at the levels of the arterial wall. Potential beneficial effects of FXR activation against atherosclerosis include suppressing the vasoconstrictive peptide endothelin-1 [71]. Induced expression of intracellular adhesion molecule 1 and vascular cell adhesion molecule 1, however, promotes atherosclerosis by recruiting macrophages to the endothelium [72]. The role of FXR in the initiation and progression of atherosclerosis has been studied in mice with Fxr gene ablation that were backcrossed into atherosclerosis-susceptible strains with either deletion of the low-density lipoprotein receptor or apolipoprotein E, respectively [73, 74]. These studies produced discrepant results whereas more recent experimentations employing an FXR agonist uniformly demonstrated protection against diet-induced aortic plaque formation [75, 76]. Translating these findings to humans is not straightforward as humans carry most cholesterol in LDL compared to the mouse that lacks cholesteryl ester transfer protein activity and thus transports most cholesterol in high-density lipoprotein [77]. In knowledge of these limitations, it would be most logical to carry out future studies in low-density lipoprotein receptor deficient mice that overexpress human cholesteryl ester transfer protein [78].


6. Summary and Perspective

FXR plays a key role in the transcriptional control of a myriad of target genes that control metabolic pathways relevant to NAFLD. By virtue of that role FXR is critically involved in the development and progression of NAFLD. Targeting FXR therefore offers exciting new perspectives for the treatment of NAFLD. However, when interpreting data obtained in cell culture and rodent models of human disease, attention needs to be paid to differences between these models and humans. One particular challenge in designing FXR agonists is separating the desired therapeutic effects from the undesirable side effects. The design of organ- or gene-specific FXR ligands may enhance the specificity and reduce side effects of this therapeutic approach. An increased understanding of the effect of cellular signaling of FXR and its coregulator proteins has the potential to aid in discovering novel selective therapeutic modulators and the development of new and more effective therapeutics. Finally one also needs to consider that the response to modulation of the FXR receptor may differ among patient with NAFLD and NASH.

Despite all the concerns raised, it is anticipated that targeting FXR will result in a more specific and individually tailored therapy that could revolutionize the management of NAFLD. Support comes from studies in rats with diabetes mellitus and fatty liver disease that received the FXR agonist INT-747 for two months [79]. This intervention decreased glucose levels and dyslipidemia, protected against body weight gain, and improved insulin resistance. It is thus very encouraging that INT-747 also has shown to improve insulin resistance in patients with diabetes mellitus and NAFLD [80]. Based on this study with a limited number of patients, an ongoing large multicenter trial enrolling 280 patients at eight U.S. centers comprising the NIDDK-sponsored NASH Clinical Research Network is under way, the results of which are eagerly awaited.


References
1. Adams LA,Angulo P. Recent concepts in non-alcoholic fatty liver diseaseDiabetic MedicineYear: 20052291129113316108837
2. Targher G,Day CP,Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver diseaseNew England Journal of MedicineYear: 2010363141341135020879883
3. Giday SA,Ashiny Z,Naab T,Smoot D,Banks A. Frequency of nonalcoholic fatty liver disease and degree of hepatic steatosis in African-American patientsJournal of the National Medical AssociationYear: 200698101613161517052050
4. Jimba S,Nakagami T,Takahashi M,et al. Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adultsDiabetic MedicineYear: 20052291141114516108839
5. Szczepaniak LS,Nurenberg P,Leonard D,et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general populationAmerican Journal of Physiology, Endocrinology and MetabolismYear: 2005288E462E46815339742
6. de Alwis NMW,Day CP. Non-alcoholic fatty liver disease: the mist gradually clearsJournal of HepatologyYear: 2008481S104S11218304679
7. Targher G,Arcaro G. Non-alcoholic fatty liver disease and increased risk of cardiovascular diseaseAtherosclerosisYear: 2007191223524016970951
8. Ekstedt M,Franzén LE,Mathiesen UL,et al. Long-term follow-up of patients with NAFLD and elevated liver enzymesHepatologyYear: 200644486587317006923
9. Kleiner DE,Brunt EM,Van Natta M,et al. Design and validation of a histological scoring system for nonalcoholic fatty liver diseaseHepatologyYear: 20054161313132115915461
10. Li S,Brown MS,Goldstein JL. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesisProceedings of the National Academy of Sciences of the United States of AmericaYear: 201010783441344620133650
11. Horton JD,Goldstein JL,Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liverJournal of Clinical InvestigationYear: 200210991125113111994399
12. Uyeda K,Repa JJ. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesisCell MetabolismYear: 20064210711016890538
13. Zimmermann R,Strauss JG,Haemmerle G,et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipaseScienceYear: 200430657001383138615550674
14. Cohen JC,Horton JD,Hobbs HH. Human fatty liver disease: old questions and new insightsScienceYear: 201133260371519152321700865
15. Fuchs M,Sanyal AJ. Arias IM,Alter HJ,Boyer JL,et al.Non-alcoholic fatty liver disease: a pathophysiological perspectiveThe liver. Biology and PathobiologyYear: 2009Pa, USAWiley-Blackwell719741
16. Satapathy SK,Sanyal AJ. Novel treatment modalities for nonalcoholic steatohepatitisTrends in Endocrinology and MetabolismYear: 2010211166867520880717
17. Arrese M,Karpen SJ. Nuclear receptors, inflammation, and liver disease: insights for cholestatic and fatty liver diseasesClinical Pharmacology and TherapeuticsYear: 201087447347820200515
18. Hsia EY,Goodson ML,Zou JX,Privalsky ML,Chen H-W. Nuclear receptor coregulators as a new paradigm for therapeutic targetingAdvanced Drug Delivery ReviewsYear: 201062131227123720933027
19. Berrabah W,Aumercier P,Lefebvre P,Staels B. Control of nuclear receptor activities in metabolism by post-translational modificationsFEBS LettersYear: 2011585111640165021486568
20. Seol W,Choi HS,Moore DD. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptorsMolecular EndocrinologyYear: 19959172857760852
21. Forman BM,Goode E,Chen J,et al. Identification of a nuclear receptor that is activated by farnesol metabolitesCellYear: 19958156876937774010
22. Makishima M,Okamoto AY,Repa JJ,et al. Identification of a nuclear receptor for bite acidsScienceYear: 199928454181362136510334992
23. Parks DJ,Blanchard SG,Bledsoe RK,et al. Bile acids: natural ligands for an orphan nuclear receptorScienceYear: 199928454181365136810334993
24. Wang H,Chen J,Hollister K,Sowers LC,Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BARMolecular CellYear: 19993554355310360171
25. Zhang Y,Kast-Woelbern HR,Edwards PA. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activationJournal of Biological ChemistryYear: 2003278110411012393883
26. Sinal CJ,Tohkin M,Miyata M,Ward JM,Lambert G,Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasisCellYear: 2000102673174411030617
27. Gadaleta RM,van Erpecum KJ,Oldenburg B,et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel diseaseGutYear: 201160446347221242261
28. Vavassori P,Mencarelli A,Renga B,Distrutti E,Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunityJournal of ImmunologyYear: 20091831062516261
29. Yang F,Huang X,Yi T,Yen Y,Moore DD,Huang W. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptorCancer ResearchYear: 200767386386717283114
30. Modica S,Murzilli S,Salvatore L,Schmidt DR,Moschetta A. Nuclear bile acid receptor FXR protects against intestinal tumorigenesisCancer ResearchYear: 200868239589959419047134
31. Hofmann AF,Small DM. Detergent properties of bile salts: correlation with physiological functionAnnual Review of MedicineYear: 196718333376
32. Hylemon PB,Zhou H,Pandak WM,Ren S,Gil G,Dent P. Bile acids as regulatory moleculesJournal of Lipid ResearchYear: 20095081509152019346331
33. Trauner M,Halilbasic E. Nuclear receptors as new perspective for the management of liver diseasesGastroenterologyYear: 201114041120112521334334
34. Grundy SM,Ahrens EH,Salen G. Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and ileal exclusion on cholesterol metabolismThe Journal of Laboratory and Clinical MedicineYear: 1971781941215569253
35. Nestel PJ,Grundy SM. Changes in plasma triglyceride metabolism during withdrawal of bileMetabolism: Clinical and ExperimentalYear: 1976251112591268185488
36. Angelin B,Einarsson K,Hellstrom K,Leijd B. Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemiaJournal of Lipid ResearchYear: 197819810171024731123
37. Watanabe M,Houten SM,Wang L,et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1cJournal of Clinical InvestigationYear: 2004113101408141815146238
38. Zhang Y,Castellani LW,Sinal CJ,Gonzalez FJ,Edwards PA. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXRGenes and DevelopmentYear: 200418215716914729567
39. Sirvent A,Claudel T,Martin G,et al. The farnesoid X receptor induces very low density lipoprotein receptor gene expressionFEBS LettersYear: 20045661–317317715147890
40. Anisfeld AM,Kast-Woelbern HR,Meyer ME,et al. Syndecan-1 expression is regulated in an isoform-specific manner by the farnesoid-X receptorJournal of Biological ChemistryYear: 200327822204202042812660231
41. Fruchart-Najib J,Baugé E,Niculescu L-S,et al. Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5Biochemical and Biophysical Research CommunicationsYear: 2004319239740415178420
42. Kast HR,Nguyen CM,Sinal CJ,et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acidsMolecular EndocrinologyYear: 200115101720172811579204
43. Kardassis D,Roussou A,Papakosta P,Boulias K,Talianidis I,Zannis VI. Synergism between nuclear receptors bound to specific hormone response elements of the hepatic control region-1 and the proximal apolipoprotein C-II promoter mediate apolipoprotein C-II gene regulation by bile acids and retinoidsBiochemical JournalYear: 2003372229130412585964
44. Claudel T,Inoue Y,Barbier O,et al. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expressionGastroenterologyYear: 2003125254455512891557
45. Torra IP,Claudel T,Duval C,Kosykh V,Fruchart JC,Staels B. Bile acids induce the expression of the human peroxisome proliferator-activated receptor α gene via activation of the farnesoid X receptorMolecular EndocrinologyYear: 200317225927212554753
46. Fuchs M,Ivandic B,Müller O,et al. Biliary cholesterol hypersecretion in gallstone-susceptible mice is associated with hepatic up-regulation of the high-density lipoprotein receptor SRBIHepatologyYear: 20013361451145911391534
47. Zhao B,Song J,Ghosh S. Hepatic overexpression of cholesteryl ester hydrolase enhances cholesterol elimination and in vivo reverse cholesterol transportJournal of Lipid ResearchYear: 200849102212221718599737
48. Fuchs M,Lammert F,Wang DQH,Paigen B,Carey MC,Cohen DE. Sterol carrier protein 2 participates in hypersecretion of biliary cholesterol during gallstone formation in genetically gallstone-susceptible miceBiochemical JournalYear: 1998336133379806881
49. Lu K,Lee MH,Hazard S,et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectivelyAmerican Journal of Human GeneticsYear: 200169227829011452359
50. Lambert G,Amar MJA,Guo G,Brewer HB,Gonzalez FJ,Sinal CJ. The farnesoid X-receptor is an essential regulator of cholesterol homeostasisJournal of Biological ChemistryYear: 200327842563257012421815
51. Claudel T,Sturm E,Duez H,et al. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response elementJournal of Clinical InvestigationYear: 2002109796197111927623
52. Gutierrez A,Ratliff EP,Andres AM,Huang X,McKeehan WL,Davis RA. Bile acids decrease hepatic paraoxonase 1 expression and plasma high-density lipoprotein levels via FXR-mediated signaling of FGFR4Arteriosclerosis, Thrombosis, and Vascular BiologyYear: 2006262301306
53. Shih DM,Kast-Woelbern HR,Wong J,Xia YR,Edwards PA,Lusis AJ. A role for FXR and human FGF-19 in the repression of paraoxonase-1 gene expression by bile acidsJournal of Lipid ResearchYear: 200647238439216269825
54. Urizar NL,Dowhan DH,Moore DD. The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expressionJournal of Biological ChemistryYear: 200027550393133931710998425
55. Hubbert ML,Zhang Y,Lee FY,Edwards PA. Regulation of hepatic insig-2 by the farnesoid X receptorMolecular EndocrinologyYear: 20072161359136917440045
56. Langhi C,Le May C,Kourimate S,et al. Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytesFEBS LettersYear: 2008582694995518298956
57. Garg A,Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trialAnnals of Internal MedicineYear: 199412164164228053615
58. Duran-Sandoval D,Mautino G,Martin G,et al. Glucose regulates the expression of the farnesoid X receptor in liverDiabetesYear: 200453489089815047603
59. Cariou B. The farnesoid X receptor (FXR) as a new target in non-alcoholic steatohepatitisDiabetes & MetabolismYear: 200834668569119195631
60. Ma K,Saha PK,Chan L,Moore DD. Farnesoid X receptor is essential for normal glucose homeostasisJournal of Clinical InvestigationYear: 200611641102110916557297
61. Cariou B,van Harmelen K,Duran-Sandoval D,et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in miceJournal of Biological ChemistryYear: 200628116110391104916446356
62. Zhang Y,Lee FY,Barrera G,et al. Activation of the nuclear receptor FXR improve hyperglycemia and hyperlipidemia in a diabetic mouseProceedings of the National Academy of SciencesYear: 200610310061011
63. Nguyen A,Bouscarel B. Bile acids and signal transduction: role in glucose homeostasisCellular SignallingYear: 200820122180219718634871
64. Wang YD,Chen WD,Wang M,Yu D,Forman BM,Huang W. Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory responseHepatologyYear: 20084851632164318972444
65. Inagaki T,Moschetta A,Lee YK,et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptorProceedings of the National Academy of Sciences of the United States of AmericaYear: 2006103103920392516473946
66. Fiorucci S,Antonelli E,Rizzo G,et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosisGastroenterologyYear: 200412751497151215521018
67. Zhang S,Wang J,Liu Q,Harnish DC. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitisJournal of HepatologyYear: 200951238038819501927
68. Kong B,Luyendyk JP,Tawfik O,Guo GL. Faresoid X receptor deficiency induced nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat dietJournal of Pharmacology and Experimental TherapeuticsYear: 200932811612218948497
69. Li J,Zhang Y,Kuruba R,et al. Roles of microRNA-29a in the antifibrotic effect of farnesoid X receptor in hepatic stellate cellsMolecular PharmacologyYear: 201180119120021511916
70. Fickert P,Fuchsbichler A,Moustafa T,et al. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblastsAmerican Journal of PathologyYear: 200917562392240519910507
71. He F,Li J,Mu Y,et al. Downregulation of endothelin-1 by farnesoid X receptor in vascular endothelial cellsCirculation ResearchYear: 200698219219916357303
72. Qin P,Tang X,Elloso MM,Harnish DC. Bile acids induce adhesion molecule expression in endothelial cells through activation of reactive oxygen species, NF-κB, and p38American Journal of Physiology, Heart and Circulatory PhysiologyYear: 20062912H741H74716582018
73. Zhang Y,Wang X,Vales C,et al. FXR deficiency reduces atherosclerosis in Ldlr -/- miceArteriosclerosis, Thrombosis, and Vascular BiologyYear: 20062623162321
74. Hanniman EA,Lambert G,McCarthy TC,Sinal CJ. Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient miceJournal of Lipid ResearchYear: 200546122595260416186601
75. Hartman HB,Gardell SJ,Petucci CJ,Wang S,Krueger JA,Evans MJ. Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR-/- and apoE -/- miceJournal of Lipid ResearchYear: 20095061090110019174369
76. Mencarelli A,Renga B,Distrutti E,Fiorucci S. Antiatherosclerotic effect of farnesoid X receptorAmerican Journal of Physiology, Heart and Circulatory PhysiologyYear: 20092962H272H28119028791
77. Hogarth CA,Roy A,Ebert DL. Genomic evidence for the absence of a functional cholesteryl ester transfer protein gene in mice and ratsComparative Biochemistry and Physiology. BYear: 20031352219229
78. Harada LM,Carrilho AJF,Oliveira HCF,Nakandakare ER,Quintão ECR. Regulation of hepatic cholesterol metabolism in CETP+/-/ LDLr+/- mice by cholesterol feeding and by drugs (cholestyramine and lovastatin) that lower plasma cholesterolClinical and Experimental Pharmacology and PhysiologyYear: 200633121209121517184503
79. Cipriani S,Mencarelli A,Palladino G,Fiorucci S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese ratsJournal of Lipid ResearchYear: 201051477178419783811
80. Sanyal AJ,Mudaliar S,Henry RR,et al. A new therapy for nonalcoholic fatty liver disease and diabetes? INT-747–the first FXR hepatic therapeutic studyHepatologyYear: 200950p. 389A

Article Categories:
  • Review Article


Previous Document:  Nuclear receptors in nonalcoholic Fatty liver disease.
Next Document:  Role of tumor associated fibroblasts in human liver regeneration, cirrhosis, and cancer.