Document Detail

No interaction between serotonin transporter gene (5-httlpr) polymorphism and adversity on depression among Japanese children and adolescents.
Jump to Full Text
MedLine Citation:
PMID:  23663729     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
BACKGROUND: Identification of gene x environment interactions (G x E) for depression is a crucial step in ascertaining the mechanisms underpinning the disorder. Earlier studies have indicated strong genetic influences and numerous environmental risk factors. In relation to childhood and adolescent depression, evidence is accumulating that the quality of the parental environment is associated with serotonin biology in children. We hypothesized that maternal depression is a crucial environmental risk factor associated with serotonin-regulating genes. METHODS: This study was designed to ascertain the G x E interaction for diagnosis of depression in a Japanese pediatric sample. DNA samples from 55 pediatric patients with depression and 58 healthy schoolchildren were genotyped for the 5-HTT (2 short (S) alleles at the 5-HTT locus) promoter serotonin-transporter-linked polymorphic region (5-HTTLPR) polymorphism. We examined whether an adverse parental environment, operationalized as the mother's history of recurrent major depressive disorder, interacts with 5-HTTLPR polymorphism to predict patients' depression symptoms. RESULTS: Binary logistic regression analyses revealed that maternal depression (adversity), gender, and FSIQ significantly affect the diagnosis of depression among children and adolescents. However, no main effect was found for adversity or genotype. Results of multivariable logistic regression analyses using stepwise procedure have elicited some models with a good fit index, which also suggests no interaction between 5-HTTLPR and adversity on depression. CONCLUSIONS: To assess G x E interaction, data obtained from children and adolescents who had been carefully diagnosed categorically and data from age-matched controls were analyzed using logistic regression. Despite an equivocal interaction effect, adversity and gender showed significant main effects.
Authors:
Akemi Tomoda; Shota Nishitani; Naomi Matsuura; Takashi X Fujisawa; Junko Kawatani; Daiki Toyohisa; Mai Ono; Kazuyuki Shinohara
Related Documents :
7377659 - Steroids in heart surgery: a clinical double-blind and randomized study.
9505729 - Psychosocial characteristics of a group of males with ischemic heart disease and extend...
17383279 - Vasodilator therapy in patients with aortic insufficiency: a systematic review.
24842279 - An examination and appreciation of the dimensions of locus of control in psychosis: iss...
17336009 - Autonomic responses during motion sickness induced by virtual reality.
10987159 - Decreased autonomic nervous system activity as assessed by heart rate variability in pa...
19656429 - The pattern and course of cognitive impairment in late-life depression.
16597219 - Estimating genetic and environmental influences on depressive symptoms in adolescence: ...
6214519 - Many faces of depression in patients with chronic pain.
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-5-10
Journal Detail:
Title:  BMC psychiatry     Volume:  13     ISSN:  1471-244X     ISO Abbreviation:  BMC Psychiatry     Publication Date:  2013 May 
Date Detail:
Created Date:  2013-5-13     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100968559     Medline TA:  BMC Psychiatry     Country:  -    
Other Details:
Languages:  ENG     Pagination:  134     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): BMC Psychiatry
Journal ID (iso-abbrev): BMC Psychiatry
ISSN: 1471-244X
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2013 Tomoda et al.; licensee BioMed Central Ltd.
open-access:
Received Day: 25 Month: 1 Year: 2013
Accepted Day: 16 Month: 4 Year: 2013
collection publication date: Year: 2013
Electronic publication date: Day: 10 Month: 5 Year: 2013
Volume: 13First Page: 134 Last Page: 134
PubMed Id: 23663729
ID: 3653806
Publisher Id: 1471-244X-13-134
DOI: 10.1186/1471-244X-13-134

No interaction between serotonin transporter gene (5-HTTLPR) polymorphism and adversity on depression among Japanese children and adolescents
Akemi Tomoda1 Email: atomoda@u-fukui.ac.jp
Shota Nishitani2 Email: nshota@nagasaki-u.ac.jp
Naomi Matsuura3 Email: namatsuu@tokyo-fukushi.ac.jp
Takashi X Fujisawa12 Email: fujisawa@nagasaki-u.ac.jp
Junko Kawatani4 Email: kawajun@kumamoto-u.ac.jp
Daiki Toyohisa4 Email: toyohisa.hassho@gmail.com
Mai Ono4 Email: m.ono.hassho@gmail.com
Kazuyuki Shinohara2 Email: kazuyuki@nagasaki-u.ac.jp
1Research Center for Child Mental Development, University of Fukui, Fukui, Japan
2Department of Neurobiology& Behavior Unit of Basic Medical Sciences Course of Medical & Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
3School of Education, Tokyo University and Graduate School of Social Welfare, Tokyo, Japan
4Department of Child Development, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan

Background

Depression, an etiologically heterogeneous group of brain disorders characterized by widely various symptoms that reflect altered cognitive, psychomotor, and emotional processes [1,2], strongly affects 3–5% of children and adolescents [3]. Depression negatively impacts growth and development, school performance, and peer or family relationships; it can lead to suicide [4-6]. Biomedical and psychosocial risk factors include a family history of depression, female sex, childhood abuse or neglect, stressful life events, and chronic illness [3,7,8]. Previous results of studies suggest that exposure to childhood adversity is associated with depression symptoms [9-12]. Although people at risk tend to have poor life outcomes, some people do well despite adversity. Protective factors such as good intellectual skills, positive temperament, parental warmth, parental involvement, and strong social connections are believed to play an important role in protecting individuals from poor development, psychological problems, and mental illness from the viewpoint of genetic etiology [13].

Results of previous studies suggest that homozygous carriers of the short allele (S/S) of the serotonin transporter gene-linked polymorphic region (5-HTTLPR) might be at increased risk for depression if they have also been exposed to early or current adversity or stress [14].

A growing body of evidence suggests that 5-HTTLPR interacts with adverse environmental influences to produce increased risk for the development of depression, although the underlying mechanisms of this association remain largely unexplored [15-19]. Various reports have described that 5-HTTLPR genotype moderates the relation between stress and depression and interacts to contribute to risk for depression in children [20-22]. However, recent meta-analyses have produced no evidence that the 5-HTTLPR genotype alone or in interaction with stressful life events is associated with an elevated risk of depression [23], or that the main effect of 5-HTTLPR genotype and the interaction effect between 5-HTTLPR and stressful life events on risk of depression are negligible [24]. Therefore, we should conduct an examination to incorporate consideration of the possibility of other confounding variables such as gender, age, and socioeconomic status along with stressful life events.

Research in this area can recast our thinking about the role of early experience in psychopathology and genetic interaction. Considering previous research, we hypothesized that interaction between 5-HTTLPR and early adversity is involved in the etiology of childhood depression. No study has tested Japanese children and adolescents. Therefore, the aim of this study is to examine whether opposite G (5-HTTLPR genotype) × E (maternal depression) interactions can be confirmed among Japanese children and adolescents. Our additional research findings will contribute to the resolution of inconsistencies in the literature. One principle aim in the current study was to test whether opposite gene-by-environment (G × E) interactions with maternal depression can be found for Japanese children and adolescents with childhood depression. This study examined G × E interactions in a sample of children with Japanese pediatric depression to test the hypothesis that 5-HTTLPR is involved in the etiology of childhood depression.


Methods
Ethics statement

The Committee of Life Ethics, Graduate School of Medicine, Kumamoto University approved the study protocol, Assurance # KUM0313. During the review of this Project, the committee specifically considered (i) the risks and anticipated benefits, if any, to subjects; (ii) the selection of subjects; (iii) the procedures for securing and documenting informed consent; (iv) the safety of subjects; and (v) the privacy of subjects and confidentiality of the data. All potential participants who declined to participate or otherwise did not participate were eligible for treatment (if applicable) and were not disadvantaged in any other way by not participating in the study. According to the Declaration of Helsinki, parents or guardians of all participants provided written informed consent for children to participate in the study after the study procedures had been explained to them.

Subjects

This study examined 55 unmedicated patients with depression: 21 boys and 34 girls aged 8–16 years (mean age, 14.3 years; standard deviation [SD], 1.9 years) who were referred to our laboratory during 2007–2011 for examination of depression (Table 1). All the patients were referred from their private pediatric clinics. For that reason, there might be referral bias related to severity despite the drug-naïve condition used for this study. All patients satisfied diagnostic criteria for depression of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) (American Psychiatric Association, 2000) [2]. To exclude other psychiatric diagnoses, the Mini-International Neuropsychiatric Interview for Children and Adolescents (MINI Kids) was administered by a licensed pediatric-psychiatric clinician. The patient group did not have high levels of suicidality or comorbidity.

To obtain data from normal age-matched healthy controls (HC), healthy schoolchildren and adolescents aged 8–16 years were recruited as subjects from the community; school students were targeted. The control group comprised 40 boys and 18 girls (mean age, 13.8 years; SD, 2.1 years). None had below-average IQ, physical problems, or psychiatric psychopathology.

All participants’ race/ethnicity was Japanese. Patients who had undergone treatment with antidepressants or hypotension drugs, or who had diagnoses of neurological illness, migraine, obstructive sleep apnea, below average IQ, or severe psychopathology were excluded from the study. Severe psychopathology was evaluated by referral to at least one pediatric psychiatrist if the patient presented indicative symptoms.

No control subject had any history of DSM-IV-TR Axis I Disorder (based on MINI Kids) including attention deficit hyperactivity disorder (ADHD) or other pervasive developmental disorder, or any history of any form of abuse or drug abuse. Table 1 presents clinical characteristics of the subjects.

As an adult control reference, we also used commercially supplied DNA of Japanese adult subjects (age 44.26 ± 13.58, 50 male and 50 female) supplied by the Health Science Research Resources Bank, Osaka, Japan.

Assessments
Depression scales

The severity of depressive symptoms was measured using the Zung self-rating depression scale (SDS) and the Birleson Depression Self-Rating Scale for Children (DSRS-C), which are similar to the children’s depression inventory used in pediatric psychiatry. The validity and reliability of Japanese version of these scales were confirmed [25,26]. Methods used for these analyses were described previously [27].

Wechsler Intelligence Scale for Children-Third Edition (WISC-III)

An individually administered measure of intelligence intended for children aged 6 years to 16 years and 11 months, WISC-III, was administered by a licensed pediatric-psychological clinician to estimate intellectual capacity [28]. The version is applicable to Japanese children and adolescents.

Child Behavior Checklist Youth Self-Report (CBCL-YSR) and SES

Patients with child depression had mean scores of 25 and 14, respectively, for Internalizing and Externalizing Problems on the CBCL Youth Self-Report [29].

Low income and poverty might be important developmental risk factors related to psychopathology [30]. The parental socioeconomic status (SES) test was administered as a composite measure of socioeconomic status [31,32]. Socioeconomic status was classified as follows: annual income below 2 million yen, 1; 2–4 million yen, 2; 4–6 million yen, 3; between 6 and 8 million yen, 4, 8–10 million yen, 5; 10–12 million yen, 6; more than 12 million yen, 7.

Early adversity

The patients’ mothers were also administered a clinical interview by a specialized physician, the Structured Clinical Interview for the DSM-IV (SCID), to assess their Axis-I disorders. They were investigated if they had either (1) no current/past disorder (low early adversity); or (2) at least two major depressive episodes during their children’s lifetime but were currently in remission (high early adversity). Approximately 20% (n = 11) of the mothers had recurrent depression; the remaining 80% (n = 44) had no history of mental health disorders. No control subject’s mother had high early adversity. Selected from the same community sample, control subjects’ mothers with no history of psychiatric problems or exposure to traumatic events served as a no early adversity contrast group.

Genotyping

Genomic DNA was extracted directly from blood samples of patients using standard techniques (MagNa pure LC350; Roche Diagnostics Corp.). In control subjects, we used a mouth swab sampling technique and extracted the DNA from buccal cells using a standard commercial extraction kit QIAamp DNA Micro Kit (Qiagen Inc., Tokyo, Japan). This study was conducted with ethnically homogeneous individuals (all were of Japanese descent) [33].

The serotonin transporter gene (5-HTTLPR) of the 5-HTT gene regulatory region was amplified by polymerase chain reaction (PCR) with forward primer (5’-GGCGTTGCCGCTCTGAATGC-3’) and reverse primer (5’-GAGGGACTGAGCTGGACAACCAC-3’). For PCR, 10 ng of genomic DNA was used in a 25-μL reaction mixture containing 0.5 U of KOD FX Neo (Toyobo Co. Ltd.) and 10 pmol of each primer in PCR buffer for KOD FX Neo (Toyobo Co. Ltd.). Cycling conditions were the following: denaturation (94°C for 2 min) and 30 cycles of amplification (98°C for 10 s, 63°C for 30 s and 68°C for 30 s). The PCR products were separated using electrophoresis in a 3% agarose gel and visualized by UV after ethidium bromide staining. A 484 bp band was observed for the short (S) allele, and a 528 bp band for the long (L) allele; heterozygous samples showed both the alleles. Two investigators scored allele sizes independently. Any inconsistency was reviewed and procedures were repeated if necessary. Genotyping was conducted blindly without knowledge of the clinical information.

The PCR-based analyses revealed that the distribution of allele frequency in the patients was 76% for the S-allele and 24% for the L-allele (Table 2). The distribution of the S/S, S/L, and L/L genotypes was, respectively, 60% (n = 33), 33% (n = 18), and 3% (n = 7). In the Japanese population, LL type of 5-HTTLPR has been reported as rare. Therefore, it might be better to examine the 5-HTTLPR proportion using Fisher’s exact test or MCMC. However, some previous reports have described the use of Hardy–Weinberg equilibrium examination empirically [34,35]. We also administered Hardy–Weinberg equilibrium examination. The observed genotype distribution was similar to the expected Hardy–Weinberg equilibrium distribution. The genotypes were divided into S/S and S/L + L/L genotypes because only four subjects with the L/L genotype were found in our sample. This genotype is uncommon among Japanese people [36].

Data analysis

The clinical variables were compared in both groups using t-tests for quantitative data and Fisher exact tests for qualitative data. Data are expressed as the mean ± SD. To explore the relation between depressive symptoms and the genotypes of the 5-HTTLPR polymorphism, analysis of covariance (ANCOVA) was performed for each of the depression scores (total SDS and DSRS-C scores) using age and gender as covariates because it has been suggested that a variable such as age might affect responses to the depression rating [30]. To confirm the main effect on the diagnosis of depression, we used binary logistic regression and set genetic, environmental factors, and the effect of the interactions between 5-HTTLPR genotype and adversity as independent variables.

Next, multivariable logistic regression analyses were performed. The dependent variable was the status of diagnosis (0 = no diagnosis, 1 = diagnosed as depression). All predictor variables were entered simultaneously into the model. Some possible models were conducted using stepwise procedures. Finally, two-way analysis of variance (ANOVA) was conducted to assess the effect of G × E interaction in each genotype group.

All statistical tests (t-test, ANCOVA and Fisher exact test, logistic regression analyses, and two-way ANOVA for discrete variables) were two-sided; P values less than .05 were inferred as statistically significant. Statistical analyses were conducted using software (SPSS Statistics 20; SPSS Inc., Chicago, IL).


Results
Demographics and IQ

Table 1 shows that the patient and control groups were well matched in terms of age (F =1.21, P = 0.40) and SES (F = 2.62, P = 0.11). Female predominance was found in the patient group (Fisher exact, P = 0.008). Subjects in the patient group were predominantly male (69%), whereas controls were predominantly female (61%; Table 1). Of 55 children and adolescents in the patient group, 11 had early adversity, although none had it in the HC group. As expected, the patient group had high SDS scores with a mean of 57.0 ± 6.4 (F = 235.96, P < 0.001) and high DSRS-C scores with a mean of 21.9 ± 6.2 (F = 189.03, P < 0.001). In addition, those who were diagnosed as having depression had a significantly higher total score of CBCL-YSR (F =23.59, P < 0.001) and internalizing score of that (F = 63.91, P < 0.001) than those of the HC group.

The patient group had significantly lower full-scale IQ (FSIQ) without discrepancies between verbal IQ (VIQ) and performance IQ (PIQ), compared to the HC group (94.3 ± 16.5 vs. 109.6 ± 12.2) (F = 6.43, P = 0.013; Table 1). Similarly, VIQ and PIQ showed significant differences in scores between the two groups (VIQ, F = 9.44, P = 0.003; PIQ, F = 7.67, P = 0.007).

The genotypic and allelic frequencies of the 5-HTTLPR variants are presented in Table 2. The distribution of allelic frequency of the patients and age-matched controls was found to be almost identical to that previously reported in Japanese people, exhibiting a similar tendency to that of our Japanese adult sample (frequency for the L/L, S/L, and S/S genotypes was: 7, 33, and 60% in the patients and 6, 31, and 63% in the age-matched controls, respectively). The overall pattern of results derived by genetic studies of 5-HTTLPR is most suggestive for a dominant mode of action of the S allele [37]. We therefore analyzed S/L heterozygous patients grouped with L/L homozygous patients (i.e., L/L + S/L versus S/S). No significant difference was found in the genotypic or allelic frequencies of 5-HTTLPR between both groups, suggesting that no sampling bias exists in the study.

As shown Table 1, significant differences were found between two groups in FSIQ, depression scores, and scores of CBCL. Because of the significant main effects of FSIQ and gender, we assumed that interaction effects between variables such as SES × age, SES × FSIQ, and gender × age would be large.

Evaluation of binary logistic regression analyses

In this study, we examined the main effect of diagnosis as depression in childhood and adolescence using binary logistic regression analyses. Adversity, gender, and FSIQ were found to be significantly associated with depression [adversity, P <0.0001, OR = 2129500000; gender, P =0.008, OR (95% CI) = 0.345 (0.158–0.754); FSIQ: P =0.001, OR (95% CI) =0.931 (00.892–0.971)]. A significant G × E interaction was observed (P <0.0001, OR = 1142600000). However no significant main effect in genotype was found (Table 3).

Evaluation of multivariable logistic regression analyses

As results of multivariable logistic regression analyses using stepwise procedure, we confirmed three models that have goodness of fit (Table 4). In Model 1, significant effects of G × E interaction, adversity, gender, and SES were found [fitness index of this model: χ2 = 61.216 (P <0.001), -2log likelihood = 37.706, discrimination accuracy = 96.9%]. In Model 2, the effect of G × E interaction was excluded and the fitness index of the model was changed [fitness index of this model, χ2 = 61.216 (P <0.001), -2log likelihood = 37.706, discrimination accuracy = 96.9%]. Finally, Model 3, the simplest, was inferred when all variables were used simultaneously in the analyses. A significant main effect of gender and FSIQ was found [fitness index of this model, χ2 = 50.660(P <0.001), -2log likelihood = 48.262, discrimination accuracy = 96.9%].

We conducted two-way ANOVA to examine the main and confounding effects on DSRS-C score in all participants. No significant G × E interaction between 5-HTTLPR genotype and adversity or main effects of genotype, adversity, and gender was found from these analyses (Table 5). Additionally, the mean scores of DSRS-C in each genotype group were analyzed. No significant difference was found in any group.


Discussion

Interaction between adverse parental environment and gender showed a significant main effect despite a lack of G × E interaction in a Japanese pediatric sample. Because all participants in this study were ethnically homogenous, this is an important consideration for generalizing the present findings.

Depression is a critical and common condition found in children and adolescents as well as adults [3,38-40]. Early life stress is a risk factor for major depression, post-traumatic stress disorder (PTSD), and drug abuse, among other conditions [8,41]. In recent years, a possible association of the 5-HTTLPR with youth depression has been traced in numerous studies [42-54]. Most studies were based on Caucasian populations, except for a few examining the Japanese general population [55,56]. No significant genotypic association of the 5-HTTLPR polymorphism with depression in a Japanese pediatric population, particularly in patients who have adverse parental environment, was operationalized as the mothers’ history of recurrent major depressive disorder. This report is the first of genotypic association of the 5-HTTLPR polymorphism in a Japanese pediatric population. Particularly, this study examined the interactive effect of 5-HTTLPR and history of maternal depression among children and early adolescents with and without current depression. Moreover, few reports in the literature describe studies of G × E interaction in a sample of young people.

According to logistic regression analyses, our findings suggest that adversity (maternal depression), gender, and FSIQ had a main effect on current depression. Among them, adversity markedly affected the diagnosis of depression. However interpretation of the effect of FSIQ required careful consideration. A low score of FSIQ might be a cause and an effect [57]. More importantly, although G (genotype) × E interaction showed a significant main effect on the diagnosis of depression, it might explain the marked impact of maternal depression mediating the existence of diagnosis. Therefore, no interaction was found between the genotype and environmental factors in this case.

Additionally, no significant effect of G × E interaction was found with influences of adversity, gender, FSIQ, and age using multivariable logistic regression analyses. Our findings suggest that depression at an early age was mediated mainly by direct family adversity and gender. These results resemble findings reported previously in longitudinal studies [41,58,59].

Numerous behavioral genetics studies have yielded scientific knowledge related to interaction between genes and the environment [60]. Most importantly, interactive effects of genes and environmental factors are expected to appear cumulatively over a long period, suggesting that onset of depression results from long-term exposure to stressors. Therefore, an effect of G × E interaction might not be confirmed in this study because the sample comprised children and early adolescents. Our findings from models 1–3 and two-way ANOVA were in concordance with results from prior studies [23,61,62].

Meta-analyses of the 5-HTTLPR G × E hypothesis have been described in many reports [17,22-24,63-65]. Sample age and gender composition emerge as important factors [64]. Furthermore, the S allele of 5-HTTLPR has been implicated in the pathology of several neuropsychiatric phenotypes including mood and anxiety disorders [66,67] and in psychiatric disorders that involve serotonergic dysfunction [68,69]. Furthermore, we reported previously that sensitive periods exist, during which brain structures are most susceptible to exposure to early life events such as childhood maltreatment. These sensitive periods tend to correspond to times of rapid developmental change [70,71]. Therefore, we emphasize that continued monitoring is recommended for children who have early life stress as they pass through puberty. Reasons for the time lag between early life stress and depression are proposed along with potential strategies for early intervention [72].

Some limitations of this study and its results should be explained. First are the small number of participants and poor statistical power. Second, the covered environmental risk factors in the study were limited. Third, this was not a longitudinal study; no information related to outcomes in late adolescence is available for patients and HC groups. Fourth, the HC group significantly had high IQ than patient group, suggesting difficulty in case control. Fifth, female predominance was found in the patient group (Fisher exact, P = 0.008), which might influence the findings. Given these limitations, it will be important for future studies to ensure an adequate range of environmental variables and populations studied because a restricted range can strongly influence G × E results. Furthermore, to tease apart and thereby discern the respective influences of G × E, G × G, and E × E interactions, employing a molecular framework to extend this research would be beneficial. A follow-up study using both molecular genetics methods and measures of proximal environments is expected to provide a useful extension of the current study.


Conclusions

In a Japanese pediatric sample, we examined whether adverse parental environment, operationalized as a mother’s history of recurrent major depressive disorder, interacts with 5-HTTLPR polymorphism to predict a patient’s symptoms of depression. Data obtained from children and adolescents who had been carefully diagnosed categorically and data from age-matched controls were analyzed using logistic regression to assess G × E interaction. Despite an equivocal interaction effect, adversity and gender showed a significant main effect.


Abbreviations

(G × E): Gene-by-environment; (5-HTTLPR): Serotonin-transporter-linked polymorphic region; (S): Short allele; (L): Long allele; (DSM-IV-TR): Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; (SD): Standard deviation; (SCID): Structured Clinical Interview for DSM-IV; (HC): Healthy controls; (ADHD): Attention deficit hyperactivity disorder; (SDS): Zung self-rating depression scale; (DSRS-C): Birleson Depression Self-Rating Scale for Children; (WISC-III): Wechsler Intelligence Scale for Children – Third Edition; (CBCL-YSR): Child Behavior Checklist Youth Self-Report; (SES): Socioeconomic status; (PCR): Polymerase chain reaction; (ANCOVA): Analysis of covariance; (ANOVA): Analysis of variance; (FSIQ): Full-scale IQ; (VIQ): Verbal IQ; (PIQ): Performance IQ; (PTSD): Post-traumatic stress disorder.


Competing interests

The authors reported no biomedical financial interests or potential conflicts of interest. The authors have declared that no competing interests exist.


Authors’ contributions

All authors have contributed to the manuscript as described below: AT designed and supervised the whole study, and AT and JK recruited and assessed the eligible patients with interviews and neuropsychological evaluation. TT and MO collected healthy control blood samples. SN, TXF, and KS conducted genotyping. Statistical analyses were conducted by AT and NM. The manuscript was originally written by AT and was revised by NM. However, all authors assisted in the revision process. All authors read and approved the final manuscript.


Pre-publication history

The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-244X/13/134/prepub


Acknowledgements

We would like to thank Tomoko Yamaguchi, MA, for her excellent technical assistance in recruiting participants.

Funding

This work was supported by a Grant-in-Aid for Scientific Research (B) and Challenging Exploratory Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (KAKENHI: grant number 24300149 and 23650223 to A.T.). This work also was partially supported by a Grant-in-Aid for Scientific Research from Japan-U.S. Brain Research Cooperation Program (grant number 210201 to AT), as well as the Research Grants from the University of Fukui to AT.

The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.


References
American Psychiatric AssociationDiagnostic and Statistical Manual of Mental Disorders, Fourth EditionYear: 19944Washington, D.C.: American Psychiatric Press
Association APDiagnostic and Statistical Manual of Mental Disorders, 4th ed., Text Revision (DSM-IV-TR)Year: 2000Washington, DC: American Psychiatric Association
Verhulst FC,van der Ende J,Ferdinand RF,Kasius MC,The prevalence of DSM-III-R diagnoses in a national sample of Dutch adolescentsArch Gen PsychiatrYear: 199713432933610.1001/archpsyc.1997.018301600490089107149
Birmaher B,Ryan ND,Williamson DE,Brent DA,Kaufman J,Dahl RE,Perel J,Nelson B,Childhood and adolescent depression: a review of the past 10 years. Part IJ Am Acad Child Adolesc PsychiatryYear: 199613111427143910.1097/00004583-199611000-000118936909
Shaffer D,Gould MS,Fisher P,Trautman P,Moreau D,Kleinman M,Flory M,Psychiatric diagnosis in child and adolescent suicideArch Gen PsychiatrYear: 199613433934810.1001/archpsyc.1996.018300400750128634012
Garrison CZ,Waller JL,Cuffe SP,McKeown RE,Addy CL,Jackson KL,Incidence of major depressive disorder and dysthymia in young adolescentsJ Am Acad Child Adolesc PsychiatrYear: 199713445846510.1097/00004583-199704000-00007
Reynolds M,Brewin CR,Saxton M,Emotional disclosure in school childrenJ Child Psychol PsychiatrYear: 200013215115910.1017/S0021963099005223
Bhatia SK,Bhatia SC,Childhood and adolescent depressionAm Fam PhysicianYear: 2007131738017225707
Lesch KP,Gene-environment interaction and the genetics of depressionJ Psychiatr NeurosciYear: 2004133174184
Akil H,Stressed and depressedNat MedYear: 200513211611810.1038/nm0205-11615692589
Hamet P,Tremblay J,Genetics and genomics of depressionMetabolismYear: 2005135 Suppl 1101515877306
Kendler KS,Kuhn JW,Vittum J,Prescott CA,Riley B,The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: a replicationArch Gen PsychiatrYear: 200513552953510.1001/archpsyc.62.5.52915867106
Shalev I,Moffitt TE,Sugden K,Williams B,Houts RM,Danese A,Mill J,Arseneault L,Caspi A,Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal studyMol PsychiatrYear: 201313557658110.1038/mp.2012.32
Caspi A,Sugden K,Moffitt TE,Taylor A,Craig IW,Harrington H,McClay J,Mill J,Martin J,Braithwaite A,Influence of life stress on depression: moderation by a polymorphism in the 5-HTT geneScienceYear: 200313563138638910.1126/science.108396812869766
Stein MB,Schork NJ,Gelernter J,Gene-by-environment (serotonin transporter and childhood maltreatment) interaction for anxiety sensitivity, an intermediate phenotype for anxiety disordersNeuropsychopharmacologyYear: 200813231231910.1038/sj.npp.130142217460615
Alexander N,Kuepper Y,Schmitz A,Osinsky R,Kozyra E,Hennig J,Gene-environment interactions predict cortisol responses after acute stress: implications for the etiology of depressionPsychoneuroendocrinologyYear: 20091391294130310.1016/j.psyneuen.2009.03.01719410377
Caspi A,Hariri AR,Holmes A,Uher R,Moffitt TE,Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traitsAm J PsychiatrYear: 201013550952710.1176/appi.ajp.2010.0910145220231323
Mueller A,Armbruster D,Moser DA,Canli T,Lesch KP,Brocke B,Kirschbaum C,Interaction of serotonin transporter gene-linked polymorphic region and stressful life events predicts cortisol stress responseNeuropsychopharmacologyYear: 20111371332133910.1038/npp.2011.1121368747
Klucken T,Alexander N,Schweckendiek J,Merz CJ,Kagerer S,Osinsky R,Walter B,Vaitl D,Hennig J,Stark R,Individual differences in neural correlates of fear conditioning as a function of 5-HTTLPR and stressful life eventsSoc Cogn Affect NeurosciYear: 201313331832510.1093/scan/nss00522258800
Kaufman J,Yang BZ,Douglas-Palumberi H,Grasso D,Lipschitz D,Houshyar S,Krystal JH,Gelernter J,Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in childrenBiol PsychiatrYear: 200613867368010.1016/j.biopsych.2005.10.026
Nederhof E,Bouma EM,Oldehinkel AJ,Ormel J,Interaction between childhood adversity, brain-derived neurotrophic factor val/met and serotonin transporter promoter polymorphism on depression: the TRAILS studyBiol PsychiatrYear: 201013220921210.1016/j.biopsych.2010.04.006
Karg K,Burmeister M,Shedden K,Sen S,The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderationArch Gen PsychiatrYear: 201113544445410.1001/archgenpsychiatry.2010.18921199959
Risch N,Herrell R,Lehner T,Liang KY,Eaves L,Hoh J,Griem A,Kovacs M,Ott J,Merikangas KR,Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysisJAMAYear: 200913232462247110.1001/jama.2009.87819531786
Munafo MR,Durrant C,Lewis G,Flint J,Gene X environment interactions at the serotonin transporter locusBiol PsychiatrYear: 200913321121910.1016/j.biopsych.2008.06.009
Zung WW,A Self-Rating Depression ScaleArch Gen PsychiatrYear: 196513637010.1001/archpsyc.1965.0172031006500814221692
Birleson P,The validity of depressive disorder in childhood and the development of a self-rating scale: a research reportJ Child Psychol PsychiatrYear: 1981131738810.1111/j.1469-7610.1981.tb00533.x
Tomoda A,Mizuno K,Murayama N,Joudoi T,Igasaki T,Miyazaki M,Miike T,Event-Related Potentials in Japanese Childhood Chronic Fatigue Syndrome (CCFS)J Pediatr NeurolYear: 200713199208
Wechsler D,Manual for the Wechsler Intelligence Scale for Children–Third editionYear: 1991San Antonio, TX: The Psychological Corporation
Achenbach TM,Integrative Guide to the 1991 CBCL/4-18, YSR, and TRF ProfilesYear: 1991Burlington: University of Vermont, Department of Psychology
Tomoda A,Kinoshita S,Korenaga Y,Mabe H,Pseudohypacusis in childhood and adolescence is associated with increased gray matter volume in the medial frontal gyrus and superior temporal gyrusCortexYear: 201213449250310.1016/j.cortex.2010.10.00121074149
Hollingshead AB,Hollingshead two factor index of social position, occupational categoriesYear: 1965Rockville, MD: National Institute of Health, Psychopharmacology Research Branch
Hollingshead AB,Redlich FC,Social class and mental illness: a community study. 1958Am J Publ HealthYear: 2007131017561757
Nishikawa S,Nishitani S,Fujisawa TX,Noborimoto I,Kitahara T,Takamura T,Shinohara K,Perceived parental rejection mediates the influence of serotonin transporter gene (5-HTTLPR) polymorphisms on impulsivity in Japanese adultsPLoS OneYear: 20121310e4760810.1371/journal.pone.004760823112823
Obayashi K,Olsson M,Anan I,Ueda M,Nakamura M,Okamoto S,Yamashita T,Miida T,Ando Y,Suhr OB,Impact of serotonin transporter and catechol-O-methyl transferase genes polymorphism on gastrointestinal dysfunction in Swedish and Japanese familial amyloidotic polyneuropathy patientsClin Chim Acta Int J Clin ChemYear: 2008131–21014
Toyoshima F,Oshima T,Nakajima S,Sakurai J,Tanaka J,Tomita T,Hori K,Matsumoto T,Miwa H,Serotonin transporter gene polymorphism may be associated with functional dyspepsia in a Japanese populationBMC Med GenetYear: 2011138821714874
Gelernter J,Kranzler H,Cubells JF,Serotonin transporter protein (SLC6A4) allele and haplotype frequencies and linkage disequilibria in African- and European-American and Japanese populations and in alcohol-dependent subjectsHum GenetYear: 199713224324610.1007/s0043900506249402979
Willeit M,Praschak-Rieder N,Neumeister A,Zill P,Leisch F,Stastny J,Hilger E,Thierry N,Konstantinidis A,Winkler D,A polymorphism (5-HTTLPR) in the serotonin transporter promoter gene is associated with DSM-IV depression subtypes in seasonal affective disorderMol PsychiatrYear: 2003131194294610.1038/sj.mp.4001392
Kazdin AE,Childhood depressionJ Child Psychol PsychiatrYear: 199013112116010.1111/j.1469-7610.1990.tb02276.x
Hasin DS,Goodwin RD,Stinson FS,Grant BF,Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on Alcoholism and Related ConditionsArch Gen PsychiatrYear: 200513101097110610.1001/archpsyc.62.10.109716203955
Teicher MH,Vitaliano GD,Witnessing violence toward siblings: an understudied but potent form of early adversityPLoS OneYear: 20111312e2885210.1371/journal.pone.002885222216127
Schilling EA,Aseltine RH Jr,Gore S,Adverse childhood experiences and mental health in young adults: a longitudinal surveyBMC Publ HealthYear: 2007133010.1186/1471-2458-7-30
Aguilera M,Arias B,Wichers M,Barrantes-Vidal N,Moya J,Villa H,van Os J,Ibanez MI,Ruiperez MA,Ortet G,Early adversity and 5-HTT/BDNF genes: new evidence of gene-environment interactions on depressive symptoms in a general populationPsychol MedYear: 20091391425143210.1017/S003329170900524819215635
Araya R,Hu X,Heron J,Enoch MA,Evans J,Lewis G,Nutt D,Goldman D,Effects of stressful life events, maternal depression and 5-HTTLPR genotype on emotional symptoms in pre-adolescent childrenAm J Med Genet B Neuropsychiatr GenetYear: 200913567068210.1002/ajmg.b.3088819016475
Blakely RD,Veenstra-VanderWeele J,Genetic indeterminism, the 5-HTTLPR, and the paths forward in neuropsychiatric geneticsArch Gen PsychiatrYear: 201113545745810.1001/archgenpsychiatry.2011.3421536974
Brown GW,Harris TO,Depression and the serotonin transporter 5-HTTLPR polymorphism: a review and a hypothesis concerning gene-environment interactionJ Affect DisordYear: 200813111210.1016/j.jad.2008.04.009
Chen MC,Joormann J,Hallmayer J,Gotlib IH,Serotonin transporter polymorphism predicts waking cortisol in young girlsPsychoneuroendocrinologyYear: 200913568168610.1016/j.psyneuen.2008.11.00619128885
Cicchetti D,Rogosch FA,Oshri A,Interactive effects of corticotropin releasing hormone receptor 1, serotonin transporter linked polymorphic region, and child maltreatment on diurnal cortisol regulation and internalizing symptomatologyDev PsychopatholYear: 20111341125113810.1017/S095457941100059922018085
Cicchetti D,Rogosch FA,Sturge-Apple M,Toth SL,Interaction of child maltreatment and 5-HTT polymorphisms: suicidal ideation among children from low-SES backgroundsJ Pediatr PsycholYear: 201013553654610.1093/jpepsy/jsp07819779024
Frodl T,Reinhold E,Koutsouleris N,Donohoe G,Bondy B,Reiser M,Moller HJ,Meisenzahl EM,Childhood stress, serotonin transporter gene and brain structures in major depressionNeuropsychopharmacologyYear: 20101361383139010.1038/npp.2010.820147891
Furman DJ,Hamilton JP,Joormann J,Gotlib IH,Altered timing of amygdala activation during sad mood elaboration as a function of 5-HTTLPRSoc Cogn Affect NeurosciYear: 201113327027610.1093/scan/nsq02920360351
Gibb BE,Benas JS,Grassia M,McGeary J,Children’s attentional biases and 5-HTTLPR genotype: potential mechanisms linking mother and child depressionJ Clin Child Adolesc PsycholYear: 200913341542610.1080/1537441090285170519437301
Gibb BE,Grassia M,Stone LB,Uhrlass DJ,McGeary JE,Brooding rumination and risk for depressive disorders in children of depressed mothersJ Abnorm Child PsycholYear: 201213231732610.1007/s10802-011-9554-y21826445
Gibb BE,Uhrlass DJ,Grassia M,Benas JS,McGeary J,Children’s inferential styles, 5-HTTLPR genotype, and maternal expressed emotion-criticism: An integrated model for the intergenerational transmission of depressionJ Abnorm PsycholYear: 200913473474519899843
Goodyer IM,Bacon A,Ban M,Croudace T,Herbert J,Serotonin transporter genotype, morning cortisol and subsequent depression in adolescentsBr J PsychiatrYear: 2009131394510.1192/bjp.bp.108.054775
Ezaki N,Nakamura K,Sekine Y,Thanseem I,Anitha A,Iwata Y,Kawai M,Takebayashi K,Suzuki K,Takei N,Short allele of 5-HTTLPR as a risk factor for the development of psychosis in Japanese methamphetamine abusersAnn N Y Acad SciYear: 200813495610.1196/annals.1432.01118991848
Ohira H,Matsunaga M,Isowa T,Nomura M,Ichikawa N,Kimura K,Kanayama N,Murakami H,Osumi T,Konagaya T,Polymorphism of the serotonin transporter gene modulates brain and physiological responses to acute stress in Japanese menStressYear: 200913653354310.3109/1025389090278782619658029
Staton RD,Wilson H,Brumback RA,Cognitive improvement associated with tricyclic antidepressant treatment of childhood major depressive illnessPercept Mot SkillsYear: 198113121923410.2466/pms.1981.53.1.2197290870
Engert V,Efanov SI,Dedovic K,Duchesne A,Dagher A,Pruessner JC,Perceived early-life maternal care and the cortisol response to repeated psychosocial stressJ Psychiatr NeurosciYear: 201013637037710.1503/jpn.100022
Zwierzynska K,Wolke D,Lereya TS,Peer Victimization in Childhood and Internalizing Problems inYear: 2012A Prospective Longitudinal Study. J Abnorm Child Psychol: Adolescence
Caspi A,Moffitt TE,Morgan J,Rutter M,Taylor A,Arseneault L,Tully L,Jacobs C,Kim-Cohen J,Polo-Tomas M,Maternal expressed emotion predicts children’s antisocial behavior problems: using monozygotic-twin differences to identify environmental effects on behavioral developmentDev PsycholYear: 200413214916114979757
Chipman P,Jorm AF,Tan XY,Easteal S,No association between the serotonin-1A receptor gene single nucleotide polymorphism rs6295C/G and symptoms of anxiety or depression, and no interaction between the polymorphism and environmental stressors of childhood anxiety or recent stressful life events on anxiety or depressionPsychiatr GenetYear: 201013181310.1097/YPG.0b013e328335114019997044
Middeldorp CM,de Geus EJ,Willemsen G,Hottenga JJ,Slagboom PE,Boomsma DI,The serotonin transporter gene length polymorphism (5-HTTLPR) and life events: no evidence for an interaction effect on neuroticism and anxious depressive symptomsTwin Res Hum GenetYear: 201013654454910.1375/twin.13.6.54421142930
Uher R,The implications of gene-environment interactions in depression: will cause inform cure?Mol PsychiatrYear: 200813121070107810.1038/mp.2008.92
Uher R,McGuffin P,The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysisMol PsychiatrYear: 200813213114610.1038/sj.mp.4002067
Kaufman J,Gelernter J,Kaffman A,Caspi A,Moffitt T,Arguable assumptions, debatable conclusionsBiol PsychiatrYear: 2010134e1920 author reply e21-13. 10.1016/j.biopsych.2009.07.041
Schinka JA,Busch RM,Robichaux-Keene N,A meta-analysis of the association between the serotonin transporter gene polymorphism (5-HTTLPR) and trait anxietyMol PsychiatrYear: 200413219720210.1038/sj.mp.4001405
Sen S,Burmeister M,Ghosh D,Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traitsAm J Med Genet B Neuropsychiatr GenetYear: 2004131858910.1002/ajmg.b.2015815108187
Lotrich FE,Pollock BG,Meta-analysis of serotonin transporter polymorphisms and affective disordersPsychiatr GenetYear: 200413312112910.1097/00041444-200409000-0000115318024
Lasky-Su JA,Faraone SV,Glatt SJ,Tsuang MT,Meta-analysis of the association between two polymorphisms in the serotonin transporter gene and affective disordersAm J Med Genet B Neuropsychiatr GenetYear: 200513111011510.1002/ajmg.b.3010415578606
Andersen SL,Tomoda A,Vincow ES,Valente E,Polcari A,Teicher MH,Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain developmentJ Neuropsychiatry Clin NeurosciYear: 200813329230110.1176/appi.neuropsych.20.3.29218806232
Tomoda A,Navalta CP,Polcari A,Sadato N,Teicher MH,Childhood sexual abuse is associated with reduced gray matter volume in visual cortex of young womenBiol PsychiatrYear: 200913764264810.1016/j.biopsych.2009.04.021
Teicher MH,Samson JA,Polcari A,Andersen SL,Length of time between onset of childhood sexual abuse and emergence of depression in a young adult sample: a retrospective clinical reportJ Clin PsychiatrYear: 200913568469110.4088/JCP.08m04235

Tables
[TableWrap ID: T1] Table 1 

Demographics, early adversity, and clinical characteristics in individuals in patients and healthy controls


  Healthy controls (n = 58) Patients (n = 55) t-test, ANOVA, other t(F)-value P-value
Demographics
 
 
 
 
  Age (years)
13.8 ± 2.1
14.3 ± 1.9
1.21
0.4
  Gender (Males/Females)
40 M/18 F
21 M/34 F
Fisher Exact
0.01
Early Adversity
0
11
Fisher Exact
<0.001
Socioeconomic Status
4.1 ± 0.6
4.0 ± 0.7
2.62
0.11
Clinical Characteristics
 
 
 
 
  SDS Score*
36.47 ± 6.19
56.95 ± 6.42
(−235.96)
<0.001
  DSRS-C Score*
7.51 ± 4.33
21.92 ± 6.23
(189.03)
<0.001
  Full Scale IQ*
109.56 ± 12.15
94.29 ± 16.49
−6.43
0.01
  Verbal IQ*
105.74 ± 9.92
89.24 ± 17.37
−9.44
0
  Performance IQ*
108.74 ± 10.69
95.78 ± 15.60
7.67
0.01
  Verbal Comprehension Index*
109.12 ± 13.00
92.38 ± 22.08
9.05
0
  Perceptual Organization*
104.41 ± 11.98
88.90 ± 21.67
4.2
0.04
  Freedom from Distractibility*
107.35 ± 12.39
91.7 ± 22.36
3.27
0.08
  Processing Speed Index*
109.06 ± 10.50
89.92 ± 25.61
7.99
0.01
Youth Self Report Score (total)
53.9 ± 25.5
84.5 ± 35.9
23.59
<0.001
  Youth Self Report Score (internal)
8.3 ± 7.2
25.1 ± 8.3
63.91
<0.001
  Youth Self Report Score (external) 10.2 ± 6.7 14.1 ± 8.6 5.46 0.02

* ANCOVA with age and gender as covariates. Values are presented as the mean and SD.

DSRS-C, Birleson Depression Self-Rating Scale for Children.


[TableWrap ID: T2] Table 2 

5-HTTLPR genotype distributions and allele frequencies in controls and depressive patients


 
Genotypes, n (%)
Allele frequencies, n (%)
  S/S S/L L/L S L
Patients
33 (60.0)
18 (32.7)
4 (7.3)
84 (76.4)
26 (23.6)
Age-matched Controls
32 (62.7)
16 (31.4)
3 (5.9)
80 (78.4)
32 (21.6)
Adult Controls 51 (51.0) 47 (47.0) 2 (2.0) 149 (74.5) 51 (25.5)

[TableWrap ID: T3] Table 3 

Binary logistic regression analyses for variables of genotype, adversity, gender, age, SES, FSIQ, and Genotype (G) × Environment (E)


           
Genotype (G)
B
SE
Wald
 p value
OR
95% CI
  0.11
   0.32
0.119
  0.730
    1.12
0.600-2.073
Adversity (E)
B
SE
Wald
 p value
OR
95% CI
 21.48
 12118.64
0.000
  0.000
 2129489594
0.000-
Gender
B
SE
Wald
 p value
OR
95% CI
 −1.06
     0.4
 7.11
  0.01
    0.35
0.158-0.754
Age
B
SE
Wald
 p value
OR
95% CI
  0.09
     0.1
 0.73
  0.39
    1.09
0.894-1.332
SES
B
SE
Wald
 p value
OR
95% CI
  −0.5
   0.31
 2.56
  0.110
    0.61
0.330-1.119
FSIQ
B
SE
Wald
 p value
OR
95% CI
 −0.07
   0.02
 10.9
    0
    0.93
00.892-0.971
Gene × Environment(E)
B
SE
Wald
 p value
OR
95% CI
 20.86  13894.65 0.000   0.000  1142607181 0.000-

note: B=unstandardized partial regression coefficient, SE = standard error, OR = odds ratio, Wald = (SE/B)2, CI = confidence interval.

Dependent variable is existence of diagnosis (0 = no, 1 = childhood depression).

Independent variables: 5-HTTLPR genotype (0 = s/s, 1 = s/l, 2 = l/l), Adversity (maternal depression: 0 = no, 1 = yes). Gender (0 = female, 1 = male), SES (from 0 = low income to 5 = high income).


[TableWrap ID: T4] Table 4 

Multivariable logistic regression analyses using stepwise procedure


             
Model1
 
      B
     SE
      Wald
      p value
     OR
95% CI
G × E interaction
−1.39
25254.67
0.000
1.000
0.25
0.000-
Genotype (G)
−1.54
0.98
2.447
0.12
0.22
0.031-1.475
Adversity (E)
21.04
21970.77
0.000
1
1371627685
0.000-
Gender
23.7
6397.2
0.000
1
0.000
0.000-
Age
0.1
0.234
0.18
0.67
1.1
0.697-1.747
SES
−1.64
0.77
0.000
1
1371627685
0.000-
FSIQ
−0.79
0.39
4.057
0.04
0.92
0.855-0.998
Fit index of this model: χ2 = 61.216 (p < 0.001), -2log likelihood = 37.706, discriminate accuracy = 96.9%
Model2
 
      B
     SE
      Wald
      p value
     OR
95% CI
Genotype (G)
−1.54
0.98
2.447
0.12
0.22
0.031-1.175
Adversity (E)
20.21
10910.59
0.000
1
599809518
0.000-
Gender
−23.7
6393.91
0
1
0.000
0.000-
Age
0.1
0.23
0.18
0.67
1.1
0.697-1.747
SES
−1.64
0.77
4.567
0.03
0.2
0.043-0.873
FSIQ
−0.08
0.04
4.06
0.04
0.92
0.855-0.998
Fit index of this model: χ2 = 61.216 (p < 0.001), -2log likelihood = 37.706, discriminate accuracy = 96.9%
Model3
 
      B
     SE
      Wald
      p value
     OR
95% CI
Gender
−22.31
7045.95
0
1
0
0.000
FSIQ
−0.088
0.04
6.08
0.01
0.92
0.853-0.982
Fit index of this model: χ2 = 50.660 (p < 0.001), -2log likelihood = 48.262, discriminate accuracy = 96.9%

note: B=unstandardized partial regression coefficient, SE = standard error, OR = odds ratio, Wald = (SE/B)2, CI = confidence interval.

dependent variable is existence of diagnosis ( 0 = no, 1 = childhood depression).

Independent variables: 5-HTTLPR genotype (0 = s/s, 1 = s/l, 2 = l/l), Adversity (maternal depression: 0 = no, 1 = yes). Gender (0 = female, 1 = male), SES(from 0 = low income to 5 = high income).


[TableWrap ID: T5] Table 5 

Two-way analysis of variance for investigating the main effect and G × E interaction


  Type III sum of squares F value P value
genotype (G)
47.884
.302
.740
adversity (E)
7.175
.091
.764
gender
163.720
2.066
.154
genotype (G) × adversity (E)
117.151
.739
.480
genotype (G) × gender
82.514
.521
.596
adversity (G) × gender 2.451 .031 .861

Dependent variable is Birleson score.

R2 = 0.98 (adjusted R2 = 0.10).

note: R = coefficient of determination, age and gender as covariates.



Article Categories:
  • Research Article

Keywords: Child depression, Gene-by-environment (G × E) interaction, Serotonin transporter gene (5-HTTLPR) Polymorphism, Early adversity.

Previous Document:  Interactions by 2D Gel Electrophoresis Overlap (iGEO): a novel high fidelity approach to identify co...
Next Document:  Significance of KATP channels, L-type Ca2+ channels and CYP450-4A enzymes in oxygen sensing in mouse...