Document Detail

No effect of menstrual cycle phase on fuel oxidation during exercise in rowers.
MedLine Citation:
PMID:  21088972     Owner:  NLM     Status:  In-Data-Review    
The aim of this investigation was to examine the effects of menstrual cycle phase on substrate oxidation and lactate concentration during exercise. Eleven eumenorrheic female rowers (18.4 ± 1.9 years; 172.0 ± 4.0 cm; 67.2 ± 8.4 kg; 27.7 ± 4.8% body fat) completed 1 h rowing ergometer exercise at 70% of maximal oxygen consumption (VO(2max)) during two different phases of the menstrual cycle: the follicular phase (FP) and the luteal phase (LP). Resting and exercise measurements of the whole body energy expenditure, oxygen consumption (VO(2)), respiratory exchange ratio (RER), substrate oxidation and lactate blood levels were made. Energy expenditure, VO(2) and heart rate during the 1-h exercise were not significantly different (P > 0.05) among menstrual cycle phases. Resting RER and RER during the entire 1 h exercise period were not significantly different among menstrual cycle phases. There was an increase (P < 0.05) in RER in the transition between rest and exercise and a further increase in RER occurred after the first 30 min of exercise at both menstrual cycle phases. Blood lactate concentrations significantly increased in the transition between rest and exercise and remained relatively constant during the whole 1 h of exercise in both menstrual cycle phases. No menstrual cycle phase effect (P > 0.05) was observed for blood lactate concentrations. In conclusion, our results demonstrated no effect of menstrual cycle phase on substrate oxidation and blood lactate concentration during rowing exercise at 70% of VO(2max) in athletes. Normally menstruating female rowers should not be concerned about their menstrual cycle phase with regard to substrate oxidation in everyday training.
Sille Vaiksaar; Jaak Jürimäe; Jarek Mäestu; Priit Purge; Svetlana Kalytka; Larissa Shakhlina; Toivo Jürimäe
Publication Detail:
Type:  Journal Article     Date:  2010-11-19
Journal Detail:
Title:  European journal of applied physiology     Volume:  111     ISSN:  1439-6327     ISO Abbreviation:  Eur. J. Appl. Physiol.     Publication Date:  2011 Jun 
Date Detail:
Created Date:  2011-05-12     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100954790     Medline TA:  Eur J Appl Physiol     Country:  Germany    
Other Details:
Languages:  eng     Pagination:  1027-34     Citation Subset:  IM    
Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioral, Social and Health Sciences, University of Tartu, 18. Ülikooli St., 50090, Tartu, Estonia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  GSR deposition along the bullet path in contact shots to composite models.
Next Document:  Effects of mode and intensity on the acute exercise-induced IL-6 and CRP responses in a sedentary, o...