Document Detail

Nfasc155H and MAG are Specifically Susceptible to Detergent Extraction in the Absence of the Myelin Sphingolipid Sulfatide.
MedLine Citation:
PMID:  24081651     Owner:  NLM     Status:  Publisher    
Mice incapable of synthesizing the myelin lipid sulfatide form paranodes that deteriorate with age. Similar instability also occurs in mice that lack contactin, contactin-associated protein or neurofascin155 (Nfasc155), the proteins that cluster in the paranode and form the junctional complex that mediates myelin-axon adhesion. In contrast to these proteins, sulfatide has not been shown to be enriched in the paranode nor has a sulfatide paranodal binding partner been identified; thus, it remains unclear how the absence of sulfatide results in compromised paranode integrity. Using an in situ extraction procedure, it has been reported that the absence of the myelin sphingolipids, galactocerebroside and sulfatide, increased the susceptibility of Nfasc155 to detergent extraction. Here, employing a similar approach, we demonstrate that in the presence of galactocerebroside but in the absence of sulfatide Nfasc155 is susceptible to detergent extraction. Furthermore, we use this in situ approach to show that stable association of myelin-associated glycoprotein (MAG) with the myelin membrane is sulfatide dependent while the membrane associations of myelin/oligodendrocyte glycoprotein, myelin basic protein and cyclic nucleotide phosphodiesterase are sulfatide independent. These findings indicate that myelin proteins maintain their membrane associations by different mechanisms. Moreover, the myelin proteins that cluster in the paranode and require sulfatide mediate myelin-axon adhesion. Additionally, the apparent dependency on sulfatide for maintaining Nfasc155 and MAG associations is intriguing since the fatty acid composition of sulfatide is altered and paranodal ultrastructure is compromised in multiple sclerosis. Thus, our findings present a potential link between sulfatide perturbation and myelin deterioration in multiple sclerosis.
A D Pomicter; J M Deloyht; A R Hackett; N Purdie; C Sato-Bigbee; S C Henderson; J L Dupree
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-10-2
Journal Detail:
Title:  Neurochemical research     Volume:  -     ISSN:  1573-6903     ISO Abbreviation:  Neurochem. Res.     Publication Date:  2013 Oct 
Date Detail:
Created Date:  2013-10-1     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  7613461     Medline TA:  Neurochem Res     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA, 23298, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Small scale membrane mechanics.
Next Document:  Speech Perception in Noise with the "Wuerzburg Speech Test for Children"