Document Detail

New thermodynamic data for CoTiO3, NiTiO3 and CoCO3 based on low-temperature calorimetric measurements.
Jump to Full Text
MedLine Citation:
PMID:  21929780     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
The low-temperature heat capacities of nickel titanate (NiTiO3), cobalt titanate (CoTiO3), and cobalt carbonate (CoCO3) were measured between 2 and 300 K, and thermochemical functions were derived from the results. Our new data show previously unknown low-temperature lambda-shaped heat capacity anomalies peaking at 37 K for CoTiO3 and 26 K for NiTiO3. From our data we calculate standard molar entropies (298.15 K) for NiTiO3 of 90.9 ± 0.7 J mol-1 K-1 and for CoTiO3 of 94.4 ± 0.8 J mol-1 K-1. For CoCO3, we find only a small broad heat capacity anomaly, peaking at about 31 K. From our data, we suggest a new standard entropy (298.15 K) for CoCO3 of 88.9 ± 0.7 J mol-1 K-1.
Authors:
Stephan Klemme; Wilfried Hermes; Mathias Eul; Clazina H Wijbrans; Arno Rohrbach; Rainer Pöttgen
Publication Detail:
Type:  Journal Article     Date:  2011-09-19
Journal Detail:
Title:  Chemistry Central journal     Volume:  5     ISSN:  1752-153X     ISO Abbreviation:  Chem Cent J     Publication Date:  2011  
Date Detail:
Created Date:  2011-10-04     Completed Date:  2011-11-10     Revised Date:  2012-11-09    
Medline Journal Info:
Nlm Unique ID:  101314213     Medline TA:  Chem Cent J     Country:  England    
Other Details:
Languages:  eng     Pagination:  54     Citation Subset:  -    
Affiliation:
Institut für Mineralogie, Westfälische-Wilhelms-Universität Münster, Corrensstr, 24, 48149 Münster, Germany. Stephan.klemme@uni-muenster.de.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Chem Cent J
ISSN: 1752-153X
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2010 Klemme et al
Received Day: 19 Month: 7 Year: 2011
Accepted Day: 19 Month: 9 Year: 2011
collection publication date: Year: 2011
Electronic publication date: Day: 19 Month: 9 Year: 2011
Volume: 5First Page: 54 Last Page: 54
ID: 3184625
Publisher Id: 1752-153X-5-54
PubMed Id: 21929780
DOI: 10.1186/1752-153X-5-54

New thermodynamic data for CoTiO3, NiTiO3 and CoCO3 based on low-temperature calorimetric measurements
Stephan Klemme1 Email: Stephan.klemme@uni-muenster.de
Wilfried Hermes2 Email: w_herm02@uni-muenster.de
Mathias Eul2 Email: m.eul@uni-muenster.de
Clazina H Wijbrans1 Email: ineke.wijbrans@uni-muenster.de
Arno Rohrbach1 Email: arno.rohrbach@uni-muenster.de
Rainer Pöttgen2 Email: pottgen@uni-muenster.de
1Institut für Mineralogie, Westfälische-Wilhelms-Universität Münster, Corrensstr. 24, 48149 Münster, Germany
2Institut für Anorganische und Analytische Chemie, Westfälische-Wilhelms-Universität Münster, Corrensstr. 30, 48149 Münster, Germany

Background

Nickel titanate (NiTiO3) and cobalt titanate (CoTiO3) belong to an important group of ilmenite-type transition metal bearing phases with a number of interesting magnetic and electric properties [1-5]. They are also important for technical applications due to their catalytic properties [6-8]. CoCO3 is a phase with interesting magnetic properties, which has not been studied in detail [9-12]. Structures, phase relations and physical properties of these phases are well documented [5,9,13-21], there is, however, a lack of low-temperature calorimetric data and associated third-law entropies. Other transition metal bearing oxide phases have recently been shown to exhibit large, hitherto unknown low-temperature heat capacity anomalies [22-31] and the aim of this paper is to investigate low-temperature heat capacities for NiTiO3, CoTiO3, and CoCO3. To our knowledge, for NiTiO3, CoTiO3, there are no reported low-temperature CP data published in the literature, and the only data for CoCO3 date back to the 1960s.


Experimental
Samples

Heat capacity measurements were performed on synthetic polycrystalline NiTiO3, CoTiO3, and CoCO3 samples. The NiTiO3 and CoTiO3 sample used in our study were synthesized from equimolar mixtures of CoO (Merck, 99.999% purity), NiO (Merck, 99.999% purity) and TiO2 (Merck, 99.99% purity). The TiO2 powder was previously fired at 1,000°C for 12 h to release any absorbed water or hydroxide. The oxides were mixed under acetone in an agate mortar and pestle for 15 min and subsequently pressed into several high density pellets of 3 mm diameter. CoCO3 was purchased from Alfa Aesar (99.5% purity, metals based). X-ray diffraction indicated CoCO3 only, with cell parameters of a = 4.662 ± 0.002 and c = 14.955 ± 0.005 Å. The NiTiO3 and CoTiO3 pellets were placed in a vertical drop furnace in a small, hand-crafted basket made of platinum wire, were fired in air at 1,150°C for 24 h, then slowly cooled to 1,000°C for 24 h, and further cooled to 900°C and held for another 24 h. The samples were then rapidly drop-quenched in distilled water and dried at 110°C for 1 h. X-ray diffraction indicated CoTiO3 and NiTiO3 only, no impurities or other unreacted oxides were detected. Our synthetic CoTiO3 had cell parameters of a = 5.029 ± 0.004 and c = 13.79 ± 0.02 Å and the NiTiO3 sample had cell parameters of a = 5.061 ± 0.006 and c = 13.91 ± 0.08 Å which compares well with previous results [1].

Low-temperature calorimetry

The heat capacities were measured with a commercially available low temperature Quantum Design Physical Properties Measurement System (PPMS) at the University of Münster. The heat capacities were measured using the heat pulse method, measuring the response of the calorimeter to a heat pulse, which is evaluated as a function of time [32]. The accuracy of the method has been tested by several groups [33,34] who found that the PPMS is capable of reproducing heat capacities of reference materials to better than 1% at T > 100 K and around 3-5% at T < 100 K. We have performed further tests using the Münster PPMS, coming to the identical conclusions. Our measurements on synthetic Al2O3 (NIST SRM-720, [35]) are depicted in Figure 1. The data show that we reproduce the heat capacity of SRM-720 to better than 1% (with an average of 0.4%) at temperatures higher than 90 K, and around 4% at T < 90 K. Overall, the standard entropy of NIST SRM-720 corundum was reproduced with our calorimeter within 0.8%, a value which is used to estimate the overall uncertainty of our calculated standard entropy values.

For the actual measurements, the sample pellets were fixed onto a pre-calibrated sample holder using Apiezon N-Grease. To compensate for the heat capacity and anomalies caused by the grease [36], addenda measurements were first performed without the sample. These heat capacity values were then subtracted from the sample measurement. Heat capacities were measured from below 5 to 303 K in increments that varied between 0.5 and 20 K at the highest temperatures (Figure 1; Tables 1, 2 and 3).


Results and Discussion

The experimental values for the low-temperature heat capacity of NiTiO3, CoTiO3 and CoCO3 are compiled in Tables 1, 2 and 3.

Figures 2, 3, and 4 depict the heat capacity of NiTiO3, CoTiO3 and CoCO3 as a function of temperature. The data for NiTiO3 and CoTiO3 were recorded in two scans, the first one ranging from about 1.5 to about 60 K, the other scan continuously up to room temperature. Figures 2 and 3 show excellent agreement between the two separate measurements. The data for CoCO3 were collected in only one scan, as only a broad low-temperature anomaly was found (Figure 4).

The standard entropies at 298.15 K (S298) were calculated from the CP data (using a T3 extrapolation to 0 K) and resulted in S298 = 90.9 ± 0.7 J mol-1 K-1 for NiTiO3, 94.4 ± 0.8 J mol-1 K-1 for CoTiO3 and 88.9 ± 0.7 J mol-1 K-1 for CoCO3 (Tables 4, 5 and 6). Our data for S298 are compared to previous results in Table 7. For CoCO3, our new data agree very well with more than 40 year old data [37]. However, our measured entropies do not agree well with estimated values [38], probably due to the fact that low temperature heat capacity anomalies occur in NiTiO3 and CoTiO3.

Our data for NiTiO3 show that a lambda-shaped low-temperature heat capacity anomaly occurs at around 26 K (Figure 2), coinciding with the antiferromagnetic transition [15,16,39]. In a similar fashion, CoTiO3 exhibits a low-temperature heat capacity anomaly peaking at 37 K, which is in excellent agreement with the old structural and magnetic data [18,40]. In contrast, CoCO3 shows only a broad anomaly peaking at around 31 K (Figure 4), which may be caused by the transition to an antiferromagnetic state [9,11,12]. Our data agree well with a recent study [11] which found that the weak antiferromagnets (Co, Ni)CO3 exhibit magnetic ordering temperatures of well below 40 K. Whilst our data indicate a transition temperature of 31 K, the older magnetic susceptibility data [10] gave a transition temperature of 18 K. The reason for the discrepancy is unknown.


Conclusions

We present new low-temperature calorimetric data for the ilmenite-type oxides NiTiO3 and CoTiO3, and for the weak antiferromagnet CoCO3. Our data show that all three phases show low-temperature heat capacity anomalies peaking between 20 and 40 K. The calorimetric data are used to calculate standard molar entropies (298.15 K), which are, due to the low-temperature anomalies, significantly higher than those previously anticipated.


Competing interests

The authors declare that they have no competing interests.


Authors' contributions

SK drafted the manuscript, synthesized the samples, and performed the data analysis. ME and WH carried out the calorimetric measurements and participated in the design of the experiments and helped to draft the manuscript. RP, AR, CHW participated in the experimental design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.


Acknowledgements and Funding

We are indebted to V. Rapelius and A. Breit for their help with sample synthesis and characterization. Furthermore, our thanks go to two anonymous reviewers for their helpful and constructive reviews.


References
Baraton MI,Busca G,Prieto MC,Ricchiardi G,Escribano VS,On the vibrational-spectra and structure of FeCrO3 and of the ilmenite-type compounds CoTiO3 and NiTiO3J Solid State ChemYear: 199411291410.1006/jssc.1994.1256
Chao TS,Ku WM,Lin HC,Landheer D,Wang YY,Mori Y,CoTiO3 high-kappa, dielectrics on HSG for DRAM applicationsIEEE Trans Electr DevYear: 2004512200220410.1109/TED.2004.839880
Chuang SH,Hsieh ML,Wu SC,Lin HC,Chao TS,Hou TH,Fabrication and Characterization of high-K dielectric nickel titanate thin films using a modified sol-gel methodJ Am Ceram SocYear: 201194251255
Kang YM,Kim KT,Kim JH,Kim HS,Lee PS,Lee JY,Liu HK,Dou SX,Electrochemical properties of Co3O4, Ni-Co3O4 mixture and Ni-Co3O4 composite as anode materials for Li ion secondary batteriesJ Power SourcesYear: 200413325225910.1016/j.jpowsour.2004.02.012
Lerch M,Laqua W,Contributions to the properties of titanates with ilmenite structure 2. Study on the thermodynamics and the electrical-conductivity of NiTiO3 and other phases with ilmenite structureZ Anorg Allg ChemYear: 1992610576310.1002/zaac.19926100110
Arvanitidis I,Kapilashrami A,Du SC,Seetharaman S,Intrinsic reduction kinetics of cobalt- and nickel-titanates by hydrogenJ Mater ResYear: 20001533834610.1557/JMR.2000.0053
Brik Y,Kacimi M,Ziyad M,Bozon-Verduraz F,Titania-supported cobalt and cobalt-phosphorus catalysts: Characterization and performances in ethane oxidative dehydrogenationJ CatalYear: 200120211812810.1006/jcat.2001.3262
Voss A,Borgmann D,Wedler G,Characterization of alumina, silica, and titania supported cobalt catalystsJ CatalYear: 2002212102110.1006/jcat.2002.3739
Alikhanov RA,Antiferromagnetism of CoCO3Soviet Physics JETP-USSRYear: 19611210291030
Borovik-Romanov AS,Ozhogin VI,Weak ferromagnetism in an antiferromagnetic CoCO3 single crystalSoviet Physics JETP-USSRYear: 1961121824
Meshcheryakov VF,Crystal field and magnetization of canted antiferromagnet CoCO3J Exp Theor PhysYear: 2007105998101010.1134/S106377610711012X
Ozhogin VI,The Antiferromagnets CoCO3, CoF2, and FeCO3 in strong fieldsSoviet Physics JETP-USSRYear: 19641811561157
Birnbaum H,Scott RK,X-ray diffraction studies of the system-Zn2TiO4 NiTiO3J Am Chem SocYear: 19507213981399
Ishikawa Y,Sawada S,The study on substances having the ilmenite structure 1. Physical properties of synthesized FeTiO3 and NiTiO3 ceramicsJ Phys Soc JpnYear: 19561149650110.1143/JPSJ.11.496
Shirane G,Pickart SJ,Ishikawa Y,Neutron diffraction study of antiferromagnetic MnTiO3 and NiTiO3J Phys Soc JpnYear: 1959141352136010.1143/JPSJ.14.1352
Heller GS,Stickler JJ,Kern S,Wold A,Antiferromagnetism in NiTiO3J Appl PhysYear: 1963341033103510.1063/1.1729357
Kaczer J,Hexagonal anisotropy and magnetization curves of antiferromagnetic CoCO3Soviet Physics JETP-USSRYear: 19631614431448
Newnham RE,Santoro RP,Fang JH,Crystal structure and magnetic properties of CoTiO3Acta CrystallogrYear: 19641724024510.1107/S0365110X64000615
Rudashevskii EG,Antiferromagnetic resonance in CoCO3Soviet Physics JETP-USSRYear: 1964199697
Lerch M,Boysen H,Neder R,Frey F,Laqua W,Neutron-scattering investigation of the high-temperature phase-transition in NiTiO3J Phys Chem SolidsYear: 1992531153115610.1016/0022-3697(92)90032-9
Busca G,Ramis G,Amores JMG,Escribano VS,Piaggio P,FT Raman and FTIR studies of titanias and metatitanate powdersJ Chem Soc-Faraday TransYear: 1994903181319010.1039/ft9949003181
Klemme S,Ahrens M,Low-temperature heat capacity of magnesioferrite (MgFe2O4)Phys Chem MinerYear: 20053237437810.1007/s00269-005-0003-8
Klemme S,Neill HSO,Schnelle W,Gmelin E,The heat capacity of MgCr2O4, FeCr2O4, and Cr2O3 at low temperatures and derived thermodynamic propertiesAm MineralYear: 20008516861693
Klemme S,van Miltenburg JC,Thermodynamic properties of nickel chromite (NiCr2O4) based on adiabatic calorimetry at low temperaturesPhys Chem MinerYear: 20022966366710.1007/s00269-002-0280-4
Klemme S,Van Miltenburg JC,Thermodynamic properties of hercynite (FeAl2O4) based on adiabatic calorimetry at low temperaturesAm MineralYear: 2003886872
Klemme S,Van Miltenburg JC,The entropy of zinc chromite (ZnCr2O4)Mineral MagYear: 20046851552210.1180/0026461046830202
Klemme S,van Miltenburg JC,The heat capacities and thermodynamic properties of NiAl2O4 and CoAl2O4 measured by adiabatic calorimetry from T = (4 to 400) KJ Chem ThermodYear: 20094184284810.1016/j.jct.2009.01.014
Manon MRF,Dachs E,Essene EJ,Low T heat capacity measurements and new entropy data for titanite (sphene): implications for thermobarometry of high-pressure rocksContr Mineral PetrolYear: 200815670972010.1007/s00410-008-0311-3
Dachs E,Geiger CA,Withers AC,Essene EJ,A calorimetric investigation of spessartine: Vibrational and magnetic heat capacityGeochim Cosmochim ActaYear: 2009733393340910.1016/j.gca.2009.03.011
Klemme S,van Miltenburg JC,Javorsky P,Wastin F,Thermodynamic properties of uvarovite garnet (Ca3Cr2Si3O12)Am MineralYear: 20059066366610.2138/am.2005.1812
OrtegaSanMartin L,Williams AJ,Gordon CD,Klemme S,Attfield JP,Low temperature neutron diffraction study of MgCr2O4 spinelJ Physics: Condens MatterYear: 20082010423810.1088/0953-8984/20/10/104238
Hwang JS,Lin KJ,Tien C,Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeterRev Sci InstrYear: 1997689410110.1063/1.1147722
Dachs E,Bertoldi C,Precision and accuracy of the heat-pulse calorimetric technique: low-temperature heat capacities of milligram-sized synthetic mineral samplesEur J MineralYear: 20051725125910.1127/0935-1221/2005/0017-0251
Lashley JC,Hundley MF,Migliori A,Sarrao JL,Pagliuso PG,Darling TW,Jaime M,Cooley JC,Hults WL,Morales L,et al. Critical examination of heat capacity measurements made on a Quantum Design physical property measurement systemCryogenicsYear: 20034336937810.1016/S0011-2275(03)00092-4
Ditmars DA,Ishihara S,Chang SS,Bernstein G,West ED,Enthalpy and heat-capacity standard reference material: synthetic sapphire (alpha-Al2O3) from 10 to 2250 KJ Res Nat Bur Stand (USA)Year: 198287159163
Schnelle W,Engelhardt J,Gmelin E,Specific heat capacity of Apiezon N high vacuum grease and of Duran borosilicate glassCryogenicsYear: 19993927127510.1016/S0011-2275(99)00035-1
Kostryukov VN,Kalinkina IN,Heat capacity and entropy for manganese, iron, cobalt, and nickel carbonates at low temperaturesRuss J Phys ChemYear: 196438780781
Kubaschewski O,The thermodynamic properties of double oxidesHigh Temp High PressureYear: 19724112
Ishikawa Y,Magnetic properties of NiTiO3-Fe2O3 solid solution seriesJ Phys Soc JpnYear: 1957121165116510.1143/JPSJ.12.1165
Ishikawa Y,Akimoto S,Magnetic property and crystal chemistry of ilmenite (MeTiO3) and hematite (alpha-Fe2O3) system 2. Magnetic propertyJ Phys Soc JpnYear: 1958131298131010.1143/JPSJ.13.1298

Figures

[Figure ID: F1]
Figure 1 

Comparison of published heat capacities of NIST SRM-720 (Ditmars et al. 1982) with PPMS measurements done at Münster University.



[Figure ID: F2]
Figure 2 

Low-temperature heat capacity data for NiTiO3. The insert shows results from two scans done at low temperatures.



[Figure ID: F3]
Figure 3 

Low-temperature heat capacity data for CoTiO3. The insert shows results from two scans done at low temperatures.



[Figure ID: F4]
Figure 4 

Low-temperature heat capacity data for CoCO3.



Tables
[TableWrap ID: T1] Table 1 

Experimental Molar Heat Capacities for NiTiO3


T Cp T Cp T Cp T Cp T Cp
K J mol-1 K-1 K J mol-1 K-1 K J mol-1 K-1 K J mol-1 K-1 K J mol-1 K-1
2.70 0.02 51.0 7.45 163.1 59.1 274.7 88.7 21.0 15.2
3.24 0.05 53.0 8.21 165.1 59.9 276.7 89.1 21.6 16.6
3.78 0.09 55.0 9.01 167.2 60.6 278.7 89.4 22.1 18.6
4.32 0.18 57.1 9.81 169.2 61.3 280.7 89.8 22.6 13.9
4.84 0.29 59.1 10.6 171.2 62.0 282.7 90.0 23.0 6.4
5.37 0.45 61.2 11.5 173.3 62.8 284.8 90.3 23.6 4.8
5.90 0.65 63.2 12.3 175.3 63.5 286.8 90.6 24.1 4.0
6.43 0.88 65.3 13.2 177.3 64.3 288.8 91.0 24.6 3.5
6.95 1.15 67.3 14.2 179.3 64.9 290.9 91.3 25.2 3.2
7.45 1.44 69.4 15.1 181.4 65.6 292.9 91.6 25.7 3.0
7.98 1.77 71.4 16.1 183.4 66.3 294.9 91.9 26.2 2.8
8.20 1.91 73.4 17.1 185.4 66.9 296.9 92.1 26.7 2.7
9.20 2.60 75.5 18.2 187.4 67.7 299.0 92.4 27.3 2.6
10.2 3.35 77.5 19.2 189.5 68.3 301.0 92.5 27.8 2.5
11.2 4.14 79.6 20.3 191.5 69.0 303.1 92.7 28.3 2.5
12.2 4.97 81.6 21.4 193.5 69.6 28.8 2.5

13.2 5.84 83.6 22.5 195.6 70.3 Series 2 29.3 2.5
14.2 6.72 85.7 23.6 197.6 70.9 T Cp 29.9 2.5
15.2 7.72 87.7 24.7 199.6 71.6 K J mol-1 K-1 30.4 2.5

16.2 8.70 89.8 25.7 201.7 72.2 2.17 0.010 30.9 2.5
17.2 9.76 91.8 26.8 203.7 72.8 2.70 0.023 31.4 2.6
18.2 10.91 93.8 27.9 205.7 73.3 3.24 0.048 32.0 2.6
19.2 12.17 95.9 29.0 207.8 73.9 3.78 0.094 32.5 2.7
20.2 13.69 97.9 30.0 209.8 74.5 4.32 0.18 33.0 2.7
21.2 15.61 100.0 31.0 211.8 75.1 4.84 0.29 33.5 2.8
22.1 19.00 102.0 32.0 213.9 75.7 5.37 0.45 34.0 2.9
23.1 5.92 104.0 33.0 215.9 76.3 5.90 0.65 34.5 3.0
24.1 4.04 106.1 33.9 217.9 76.8 6.43 0.88 35.1 3.0
25.1 3.25 108.1 34.9 219.9 77.4 7.0 1.2 35.6 3.1
26.1 2.84 110.1 35.9 222.0 77.9 7.5 1.4 36.1 3.2
27.1 2.62 112.2 36.8 224.0 78.4 8.0 1.8 36.6 3.3
28.1 2.50 114.2 37.7 226.0 78.9 8.5 2.1 37.1 3.4
29.1 2.46 116.3 38.6 228.0 79.4 9.0 2.5 37.7 3.5
30.1 2.48 118.3 39.5 230.1 79.9 9.5 2.9 38.2 3.7
31.1 2.53 120.3 40.5 232.1 80.3 10.1 3.3 38.7 3.8
32.1 2.62 122.4 41.4 234.1 80.8 10.6 3.6 39.2 3.9
33.1 2.74 124.4 42.4 236.2 81.3 11.1 4.1 39.7 4.0
34.0 2.87 126.5 43.4 238.2 81.8 11.6 4.5 40.3 4.1
35.0 3.03 128.5 44.3 240.2 82.3 12.2 5.0 40.8 4.2
36.0 3.21 130.5 45.3 242.3 82.8 12.7 5.4
37.0 3.40 132.6 46.1 244.3 83.2 13.2 5.9
38.0 3.61 134.6 47.1 246.3 83.6 13.7 6.3
39.0 3.83 136.6 48.0 248.4 84.0 14.3 6.8
40.0 4.05 138.7 48.9 250.4 84.4 14.8 7.3
41.0 4.30 140.7 49.8 252.4 84.8 15.3 7.8
42.0 4.56 142.7 50.7 254.4 85.2 15.8 8.3
43.0 4.85 144.8 51.6 256.5 85.6 16.3 8.9
44.0 5.15 146.8 52.4 258.5 85.9 16.9 9.4
45.0 5.46 148.8 53.3 260.5 86.3 17.4 10.0
46.0 5.77 150.9 54.2 262.6 86.7 17.9 10.6
47.0 6.09 152.9 55.0 264.6 87.0 18.4 11.2
48.0 6.41 155.0 55.9 266.6 87.4 18.9 11.8
49.0 6.74 157.0 56.7 268.6 87.7 19.5 12.6
49.9 7.08 159.0 57.5 270.6 88.0 20.0 13.3
50.9 7.47 161.1 58.3 272.6 88.4 20.5 14.2

[TableWrap ID: T2] Table 2 

Experimental Molar Heat Capacities for CoTiO3


T CP T CP T CP T CP T CP T CP
K J mol-1K-1 K J mol-1K-1 K J mol-1K-1 K J mol-1K-1 K J mol-1K-1 K J mol-1K-1
2.17 0.002 95.0 34.89 127.2 49.74 155.3 61.01 8.15 0.093 46.7 9.6
3.92 0.006 96.7 35.78 127.7 49.95 155.8 61.22 9.14 0.15 47.2 9.8
5.65 0.022 98.3 36.62 128.2 50.17 156.3 61.40 10.12 0.22 47.8 10.0
7.34 0.065 100.0 37.42 128.7 50.37 156.8 61.56 11.1 0.31 48.3 10.1
9.04 0.131 101.6 38.00 129.3 50.62 157.3 61.79 12.1 0.43 48.8 10.3
10.8 0.286 101.7 38.25 129.8 50.85 157.8 61.92 13.1 0.58 49.3 10.5
12.4 0.491 102.2 38.49 130.3 51.07 158.3 62.13 14.1 0.75 49.8 10.7
14.2 0.774 102.7 38.73 130.8 51.24 158.9 62.31 15.1 0.95 50.3 10.9
15.8 1.14 103.2 39.01 131.3 51.46 159.4 62.47 16.0 1.17 50.9 11.1
17.5 1.59 103.7 39.22 131.8 51.70 159.9 62.67 17.0 1.42 51.4 11.4
19.2 2.11 104.2 39.47 132.3 51.89 160.4 62.85 18.0 1.70 51.9 11.6
20.9 2.73 104.8 39.73 132.8 52.12 160.9 63.01 19.0 2.01 52.4 11.8
22.6 3.44 105.3 39.95 133.3 52.35 161.4 63.20 20.0 2.35 52.9 12.0
24.3 4.23 105.8 40.18 133.8 52.58 161.9 63.33 20.9 2.71 53.4 12.3
26.0 5.11 106.3 40.45 134.3 52.80 162.4 63.34 21.9 3.11 53.9 12.5
27.7 6.11 106.8 40.69 134.9 52.96 162.4 63.46 22.9 3.55 54.5 12.7
29.3 7.18 107.3 40.91 135.4 53.19 167.3 65.01 23.9 4.02 55.0 13.0
31.0 8.38 107.8 41.17 135.9 53.42 172.2 66.53 24.9 4.49 55.5 13.2
32.7 9.77 108.3 41.38 136.4 53.61 177.0 68.01 25.8 5.00 56.0 13.5
34.4 11.32 108.8 41.63 136.9 53.83 181.9 69.38 26.8 5.54 56.5 13.7
36.1 13.20 109.3 41.86 137.4 54.11 186.8 70.68 27.8 6.11 57.0 14.0
37.6 14.08 109.9 42.07 137.9 54.30 191.6 72.00 28.8 6.77 57.6 14.2
39.4 10.69 110.4 42.32 138.4 54.48 196.5 73.31 29.7 7.38 58.1 14.5
41.1 9.24 110.9 42.52 138.9 54.73 201.4 74.40 30.6 7.82 58.6 14.7
42.8 8.97 111.4 42.75 139.5 54.88 206.2 75.52 30.7 8.12 59.1 14.9
44.5 9.13 111.9 42.96 140.0 55.10 211.1 76.59 31.2 8.50 59.6 15.2
46.2 9.51 112.4 43.16 140.5 55.34 216.0 77.77 31.8 8.91 60.1 15.4
47.9 10.02 112.9 43.41 141.0 55.54 220.8 78.73 32.3 9.33 60.6 15.7
49.6 10.64 113.4 43.58 141.5 55.76 225.7 79.58 32.8 9.75 61.2 15.9
51.3 11.31 113.9 43.77 142.0 55.97 230.5 80.34 33.3 10.2
52.9 12.05 114.5 43.99 142.5 56.16 235.4 81.07 33.8 10.7
54.6 12.84 115.0 44.20 143.0 56.35 240.3 81.96 34.3 11.2
56.3 13.62 115.5 44.44 143.5 56.51 245.2 82.62 34.8 11.7
58.0 14.43 116.0 44.67 144.0 56.73 250.0 83.15 35.4 12.3
59.7 15.21 116.5 44.89 144.6 56.95 254.9 83.70 35.9 13.0
61.4 16.04 117.0 45.14 145.1 57.15 259.8 84.11 36.4 13.8
63.0 16.88 117.5 45.35 145.6 57.36 264.6 84.53 36.9 14.5
64.7 17.75 118.0 45.59 146.1 57.55 269.4 85.05 37.4 14.6
66.4 18.62 118.5 45.79 146.6 57.71 274.3 85.48 37.9 13.8
68.1 19.51 119.1 46.06 147.1 57.93 279.1 85.82 38.4 12.6
69.8 20.41 119.6 46.26 147.6 58.11 284.0 86.18 38.9 11.5
71.5 21.33 120.1 46.49 148.1 58.31 288.8 86.29 39.4 10.7
73.1 22.33 120.6 46.74 148.6 58.52 293.7 86.52 40.0 10.0
74.8 23.30 121.1 46.99 149.2 58.75 298.6 86.80 40.5 9.6
76.5 24.26 121.6 47.21 149.7 58.92 304.3 90.15 41.0 9.3
78.2 25.27 122.1 47.45 150.2 59.13 41.5 9.1

79.9 26.29 122.6 47.70 150.7 59.31 Series 2 42.1 9.0
81.5 27.25 123.1 47.93 151.2 59.51 T CP 42.6 9.0
83.2 28.24 123.6 48.14 151.7 59.69 K J mol-1K-1 43.1 9.0

84.9 29.21 124.2 48.41 152.2 59.88 2.24 0.0018 43.6 9.0
86.6 30.21 124.7 48.62 152.7 60.06 3.19 0.0034 44.1 9.1
88.3 31.13 125.2 48.88 153.2 60.24 4.20 0.0085 44.7 9.2
89.9 32.06 125.7 49.07 153.7 60.44 5.20 0.0164 45.2 9.3
91.6 33.05 126.2 49.30 154.3 60.65 6.19 0.0285 45.7 9.4
93.3 33.99 126.7 49.49 154.8 60.86 7.21 0.0572 46.2 9.5

[TableWrap ID: T3] Table 3 

Experimental Molar Heat Capacities for CoCO3


T Cp T Cp T Cp T Cp
K J mol-1K-1 K J mol-1K-1 K J mol-1K-1 K J mol-1K-1
2.21 0.02 24.8 3.23 47.3 10.17 282.8 82.56
2.60 0.03 25.2 3.28 47.7 10.35 287.9 83.26
3.01 0.04 25.6 3.34 48.1 10.54 293.0 83.84
3.43 0.06 26.0 3.39 48.5 10.72 298.1 84.79
3.86 0.08 26.4 3.45 48.9 10.90 304.0 86.19
4.27 0.11 26.8 3.52 49.3 11.08
4.68 0.15 27.2 3.58 49.7 11.29
5.10 0.19 27.7 3.68 50.1 11.47
5.51 0.24 28.1 3.77 50.5 11.66
5.92 0.33 28.5 3.84 50.8 11.67
6.34 0.39 28.9 3.92 51.0 11.93
6.75 0.45 29.3 4.00 56.1 14.51
7.18 0.52 29.7 4.09 61.3 17.03
7.54 0.58 30.1 4.20 66.5 19.66
7.95 0.73 30.5 4.31 71.7 22.30
8.35 0.81 30.9 4.39 76.8 25.28
8.76 0.90 31.3 4.48 82.0 28.12
9.17 0.99 31.8 4.57 87.2 30.85
9.58 1.08 32.2 4.68 92.3 33.40
9.99 1.30 32.6 4.80 97.5 35.82
10.4 1.41 33.0 4.92 102.7 37.95
10.8 1.53 33.4 5.01 107.8 39.99
11.2 1.64 33.8 5.14 113.0 41.75
11.6 1.90 34.2 5.26 118.2 43.56
12.0 2.06 34.6 5.40 123.3 45.43
12.5 2.20 35.0 5.50 128.5 47.20
12.9 2.50 35.4 5.59 133.6 48.95
13.3 2.66 35.8 5.71 138.8 50.65
13.7 2.83 36.2 5.83 144.0 52.24
14.1 3.15 36.7 6.00 149.1 53.85
14.5 3.26 37.0 6.13 154.3 55.46
14.9 3.22 37.5 6.25 159.5 56.93
15.3 3.05 37.9 6.40 164.6 58.27
15.7 2.91 38.3 6.57 169.8 59.60
16.1 2.82 38.7 6.68 174.9 60.84
16.6 2.76 39.1 6.79 180.1 62.22
17.0 2.71 39.5 6.94 185.2 63.43
17.4 2.69 39.9 7.11 190.3 64.64
17.8 2.67 40.3 7.25 195.5 65.84
18.2 2.66 40.7 7.39 200.6 66.91
18.6 2.66 41.1 7.55 205.8 68.13
19.0 2.67 41.5 7.72 210.9 69.25
19.4 2.67 42.0 7.88 216.1 70.36
19.8 2.69 42.4 8.05 221.2 71.34
20.3 2.77 42.8 8.23 226.4 72.16
20.7 2.80 43.2 8.40 231.5 73.25
21.1 2.82 43.6 8.57 236.6 74.31
21.5 2.85 44.0 8.74 241.8 75.37
21.9 2.88 44.4 8.90 247.0 76.42
22.3 2.91 44.8 9.10 252.1 77.36
22.7 2.96 45.2 9.26 257.2 78.22
23.1 3.00 45.6 9.42 262.4 79.16
23.5 3.03 46.1 9.62 267.5 80.16
24.0 3.09 46.5 9.80 272.6 81.02
24.4 3.18 46.9 9.98 277.7 81.90

[TableWrap ID: T4] Table 4 

Thermodynamic properties at selected temperatures for NiTiO3


T Cp Cp/T S (T)
K J mol-1K-1 J mol-1 K-2 J mol-1 K-1
300 92.4 0.308 91.5
298.15 92.3 0.309 90.9
290 91.2 0.314 88.4
280 89.7 0.320 85.2
270 87.9 0.326 82.0
260 86.2 0.332 78.7
250 84.3 0.337 75.3
240 82.2 0.343 71.9
230 79.9 0.347 68.5
220 77.4 0.352 65.0
210 74.5 0.355 61.4
200 71.7 0.358 57.9
190 68.5 0.360 54.3
180 65.1 0.362 50.7
170 61.6 0.362 47.1
160 57.9 0.362 43.4
150 53.8 0.359 39.8
140 49.5 0.354 36.3
130 45.0 0.346 32.8
120 40.3 0.336 29.3
110 35.8 0.325 26.0
100 31.0 0.310 22.9
90 25.9 0.287 19.9
80 20.5 0.257 17.1
70 15.4 0.220 14.8
60 11.0 0.183 12.7
50 7.11 0.142 11.1
40 4.05 0.101 9.89
30 2.48 0.083 9.01
20 13.4 0.672 6.03
15 7.53 0.502 3.13
10 3.20 0.320 1.05
5 4.15 0.830 0.080

[TableWrap ID: T5] Table 5 

Thermodynamic properties at selected temperatures for CoTiO3


T Cp Cp/T S (T)
K J mol-1K-1 J mol-1 K-2 J mol-1 K-1
300 87.6 0.292 95.0
298.15 86.8 0.291 94.4
290 86.3 0.298 92.0
280 85.9 0.307 89.0
270 85.1 0.315 85.9
260 84.1 0.324 82.7
250 83.1 0.333 79.4
240 81.9 0.341 76.1
230 80.3 0.349 72.6
220 78.6 0.357 69.1
210 76.3 0.364 65.5
200 74.1 0.370 61.8
190 71.6 0.377 58.1
180 68.9 0.383 54.3
170 65.9 0.387 50.4
160 62.7 0.392 46.5
150 59.1 0.394 42.6
140 55.1 0.394 38.7
130 51.0 0.392 34.7
120 46.5 0.387 30.8
110 42.1 0.383 27.0
100 37.4 0.374 23.2
90 32.1 0.357 19.5
80 26.4 0.330 16.1
70 20.5 0.293 13.0
60 15.4 0.256 10.2
50 10.8 0.216 7.86
40 10.2 0.254 5.71
30 7.65 0.255 2.56
20 2.39 0.120 0.72
15 0.96 0.064 0.26
10 0.22 0.022 0.058
5 0.02 0.003 0.006

[TableWrap ID: T6] Table 6 

Thermodynamic properties at selected temperatures for CoCO3


T Cp Cp/T S (T)
K J mol-1K-1 J mol-1 K-2 J mol-1 K-1
300 85.2 0.284 89.4
298.15 84.8 0.284 88.9
290 83.5 0.288 86.6
280 82.2 0.294 83.7
270 80.6 0.298 80.7
260 78.7 0.303 77.7
250 77.0 0.308 74.7
240 75.0 0.312 71.6
230 72.9 0.317 68.4
220 71.1 0.323 65.2
210 69.0 0.329 61.9
200 66.8 0.334 58.6
190 64.6 0.340 55.3
180 62.2 0.346 51.8
170 59.7 0.351 48.4
160 57.1 0.357 44.8
150 54.1 0.361 41.2
140 51.0 0.364 37.6
130 47.7 0.367 33.9
120 44.2 0.369 30.3
110 40.7 0.370 26.6
100 36.9 0.369 22.9
90 32.2 0.358 19.2
80 27.0 0.338 15.7
70 21.4 0.306 12.5
60 16.4 0.273 9.62
50 11.4 0.228 7.09
40 7.14 0.178 5.06
30 4.17 0.139 3.49
20 2.72 0.136 2.16
15 3.18 0.212 1.37
10 1.31 0.131 0.46
5 0.18 0.036 0.062

[TableWrap ID: T7] Table 7 

Comparison of our data with previous results


NiTiO3 CoTiO3 CoCO3 reference
S (298.15) S (298.15) S (298.15)
J mol-1K-1 J mol-1K-1 J mol-1K-1

90.9(0.7) 94.4(0.8) 88.9(0.7) this study
80.1(3.7) 96.9* [38]
88.7(1.7) [37]

Uncertainties given in brackets. * Note that the value for S298 for CoTiO3 reported in [38] did not contain uncertainties.



Article Categories:
  • Research Article


Previous Document:  Lyme neuroborreliosis in HIV-1 positive men successfully treated with oral doxycycline: a case serie...
Next Document:  Timing of preoperative antibiotics for knee arthroplasties: Improving the routines in Sweden.