Document Detail


Neural population representation hypothesis of visual flow and its illusory after effect in the brain: psychophysics, neurophysiology and computational approaches.
MedLine Citation:
PMID:  22511913     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
The neural representation of motion aftereffects induced by various visual flows (translational, rotational, motion-in-depth, and translational transparent flows) was studied under the hypothesis that the imbalances in discharge activities would occur in favor in the direction opposite to the adapting stimulation in the monkey MST cells (cells in the medial superior temporal area) which can discriminate the mode (i.e., translational, rotational, or motion-in-depth) of the given flow. In single-unit recording experiments conducted on anaesthetized monkeys, we found that the rate of spontaneous discharge and the sensitivity to a test stimulus moving in the preferred direction decreased after receiving an adapting stimulation moving in the preferred direction, whereas they increased after receiving an adapting stimulation moving in the null direction. To consistently explain the bidirectional perception of a transparent visual flow and its unidirectional motion aftereffect by the same hypothesis, we need to assume the existence of two subtypes of MST D cells which show directionally selective responses to a translational flow: component cells and integration cells. Our physiological investigation revealed that the MST D cells could be divided into two types: one responded to a transparent flow by two peaks at the instances when the direction of one of the component flow matched the preferred direction of the cell, and the other responded by a single peak at the instance when the direction of the integrated motion matched the preferred direction. In psychophysical experiments on human subjects, we found evidence for the existence of component and integration representations in the human brain. To explain the different motion perceptions, i.e., two transparent flows during presentation of the flows and a single flow in the opposite direction to the integrated flows after stopping the flow stimuli, we suggest that the pattern-discrimination system can select the motion representation that is consistent with the perception of the pattern from two motion representations. We discuss the computational aspects related to the integration of component motion fields.
Authors:
Hide-Aki Saito; Eiki Hida; Shun-Ichi Amari; Hiroshi Ohno; Naoki Hashimoto
Related Documents :
10436473 - The influence of dynamic visual environments on postural sway in the elderly.
20069483 - Notebook computer use on a desk, lap and lap support: effects on posture, performance a...
21295993 - On the relation between the kautsky effect (chlorophyll a fluorescence induction) and p...
Publication Detail:
Type:  Journal Article     Date:  2012-01-13
Journal Detail:
Title:  Cognitive neurodynamics     Volume:  6     ISSN:  1871-4099     ISO Abbreviation:  Cogn Neurodyn     Publication Date:  2012 Apr 
Date Detail:
Created Date:  2012-04-18     Completed Date:  2012-08-23     Revised Date:  2013-05-29    
Medline Journal Info:
Nlm Unique ID:  101306907     Medline TA:  Cogn Neurodyn     Country:  Netherlands    
Other Details:
Languages:  eng     Pagination:  169-83     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  A case of emphysematous hepatitis with spontaneous pneumoperitoneum in a patient with hilar cholangi...
Next Document:  Traveling EEG slow oscillation along the dorsal attention network initiates spontaneous perceptual s...