Document Detail

Network Dynamics During the Progression of Seizure-Like Events in the Hippocampal-Parahippocampal Regions.
MedLine Citation:
PMID:  23048021     Owner:  NLM     Status:  Publisher    
Seizure patterns in temporal lobe epilepsies have been described both in humans and in animal models. The involvement of specific hippocampal-parahippocampal subregions in the initiation and progression of temporal lobe seizures is not defined yet. We analyzed limbic network dynamics during seizures induced by 3-min arterial perfusion of 50 µM bicuculline in the in vitro isolated guinea pig brain preparation. As for human and animal temporal lobe epilepsies, 2 seizure types characterized at onset by either fast activity (FA) or hypersynchronous activity (HSA) were observed in our acute model. Simultaneous extracellular recordings were performed from ventral hippocampal-parahippocampal subregions with multichannel electrodes, and laminar analysis and propagation directions were computed to define reciprocal interactions during seizures. FA seizures started with fast oscillations generated in CA1-subiculum and entorhinal cortex, followed by irregular spikes and progressively regular bursts well defined in all subfields, with the exception of pre- and parasubiculum that do not participate in seizure activity. Dentate gyrus was not involved at FA seizure onset and became prominent during the transition to bursting in both FA and HSA patterns. HSA seizures were similar to FA events, but lacked initial FA. During seizures, reliable and steady propagation within the intra-hippocampal re-entrant loop was observed.
Davide Boido; Nithiya Jesuthasan; Marco de Curtis; Laura Uva
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-9
Journal Detail:
Title:  Cerebral cortex (New York, N.Y. : 1991)     Volume:  -     ISSN:  1460-2199     ISO Abbreviation:  Cereb. Cortex     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-10     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9110718     Medline TA:  Cereb Cortex     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Unit of Experimental Epileptology and Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Making Synapses Strong: Metaplasticity Prolongs Associativity of Long-Term Memory by Switching Synap...
Next Document:  TMS on Right Frontal Eye Fields Induces an Inflexible Focus of Attention.