Document Detail

Necrotizing enterocolitis in very low birth weight infants: a systemic review.
Jump to Full Text
MedLine Citation:
PMID:  22997587     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
Necrotizing enterocolitis (NEC) is the most common serious gastrointestinal disorder affecting very preterm or very low birth weight infants. The risk is inversely proportional to gestational age and weight at birth. Fetal growth restriction and compromise may be additional specific risk factors. Despite extensive research and animal studies etiopathogenesis, preventive strategies and management options remain controversial. The present paper reviews the literature for recent advances and newer insights for changing epidemiological trends, pathogenesis, role of inflammatory cytokines, and various preventive and management strategies.
Authors:
Bhoomika K Patel; Jigna S Shah
Related Documents :
24468227 - Mortality and management of surgical necrotizing enterocolitis in very low birth weight...
23107337 - Comparison of national gestational weight gain guidelines and energy intake recommendat...
1907817 - Reliability of capnography in identifying esophageal intubation with carbonated beverag...
11731647 - Comparison of management strategies for extreme prematurity in new jersey and the nethe...
8630307 - Very preterm birth--a regional study. part 1: maternal and obstetric factors.
21784447 - Benefits of supplemented preterm formulas on insulin sensitivity and body composition a...
Publication Detail:
Type:  Journal Article     Date:  2012-09-10
Journal Detail:
Title:  ISRN gastroenterology     Volume:  2012     ISSN:  2090-4401     ISO Abbreviation:  ISRN Gastroenterol     Publication Date:  2012  
Date Detail:
Created Date:  2012-09-21     Completed Date:  2012-09-24     Revised Date:  2013-03-07    
Medline Journal Info:
Nlm Unique ID:  101563306     Medline TA:  ISRN Gastroenterol     Country:  Egypt    
Other Details:
Languages:  eng     Pagination:  562594     Citation Subset:  -    
Affiliation:
Department of Clinical Pharmacy, Shri Sarvajanik Pharmacy College, Near Arvind Baug, Gujarat, Mehsana 384001, India.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): ISRN Gastroenterol
Journal ID (iso-abbrev): ISRN Gastroenterol
Journal ID (publisher-id): ISRN.GASTROENTEROLOGY
ISSN: 2090-4398
ISSN: 2090-4401
Publisher: International Scholarly Research Network
Article Information
Download PDF
Copyright © 2012 B. K. Patel and J. S. Shah.
open-access:
Received Day: 18 Month: 4 Year: 2012
Accepted Day: 19 Month: 6 Year: 2012
collection publication date: Year: 2012
Electronic publication date: Day: 10 Month: 9 Year: 2012
Volume: 2012E-location ID: 562594
ID: 3444861
PubMed Id: 22997587
DOI: 10.5402/2012/562594

Necrotizing Enterocolitis in Very Low Birth Weight Infants: A Systemic Review
Bhoomika K. PatelI1
Jigna S. ShahI1*
Department of Clinical Pharmacy, Shri Sarvajanik Pharmacy College, Near Arvind Baug, Gujarat, Mehsana 384001, India
Correspondence: *Jigna S. Shah: jignashah74@yahoo.com
[other] Academic Editors: C.-Y. Chen and C. Sperti

1. Introduction

Necrotizing enterocolitis (NEC) is a devastating condition of the neonatal period characterized by bowel necrosis and multisystem organ failure. It is well known that NEC is associated with prematurity and particularly with extremely low birth weight [13]. Necrotizing enterocolitis is rare in term infants [4], in whom it is usually associated with congenital anomalies, sepsis, or hypotension [5]. The morbidity and mortality are high, and optimal strategies for treatment remain elusive, despite decades of research.


2. Epidemiology

Necrotizing enterocolitis (NEC) is affecting about 5% of all very preterm or very low birth weight infants (VLBW: <1500 g) and about 10% of all extremely preterm or extremely low birth weight (ELBW: <1000 g) infants (Table 1). The rate of NEC-associated acute mortality is generally reported to be greater than 10% overall and more than 25% for infants with NEC severe enough to require a surgical intervention. Infants with NEC have a higher incidence of nosocomial infections and lower levels of nutrient intake, grow more slowly, and have longer durations of intensive care and hospital stay.

Population studies from India on this condition are not widely publicized. In one such report the incidence of NEC in babies less than 32 weeks gestation was 5.2% [6]. Mortality rates vary across centres and range from 10 to 40% depending on gestational age of the baby [710].


3. Risk Factors

  1. Prematurity (<28 weeks).
  2. Enteral feeding (90% are fed enterally).
  3. Growth restricted neonate [11].
  4. Maternal hypertensive disease of pregnancy.
  5. Placental abruption.
  6. Absent or reversed end diastolic flow velocity.
  7. Use of umbilical catheters [1214].
  8. Low Apgar scores [1214].
  9. Packed cell transfusions.


4. Factors Making Premature Infant's Gut Susceptible to NEC

  1. Mechanical factors (barrier integrity):
    1. decreased peristalsis,
    2. mucus layer deficiency,
    3. composition of lipids (premature gut is more permeable).
  2. Bacterial factors:
    1. delayed or altered bacterial colonization,
    2. paucity of anaerobic bacteria.
  3. Miscellaneous:
    1. decreased gastric acid production,
    2. decreased lactase levels,
    3. decreased bile acids (insufficient to form bile micelles).


5. Genetic Contribution in NEC

Studies comparing the concordance of disease in monozygotic versus dizygotic twins suggest that familial factors may contribute to the risk of NEC. Association studies have so far failed to detect any specific and substantial genetic risk factors. NEC is a sporadic disease which occurs infrequently in individual centres; this sort of investigation would require a coordinated multinational effort to achieve recruitment of sufficient participants to provide a meaningful analysis.


6. Pathogenesis
6.1. Disordered Enterocyte Signaling

Recently Hackam et al. have proposed a model of how this can lead to intestinal barrier dysfunction [15]. Rather than serving as an absorptive surface for nutrients, the enterocytes form a tight epithelial barrier that restricts the passage of microbial pathogens and regulates mucosal antigen sampling. Perturbations in the enterocyte signaling can lead to disruption of the epithelial barrier, bacterial translocation, and activation of the inflammatory cascade resulting in full blown NEC [15] (Figure 1).

6.2. Pathophysiologic Mediators
6.2.1. Ischemic Reperfusion Injury

Ischemia causes accumulation of free oxygen radicals generated by the conversion of xanthine dehydrogenase to xanthine oxidase [16]. During reperfusion process there is a further burst of superoxide which causes tissue damage.

6.2.2. Inflammatory Mediators

Studies show that intestinal cells of premature infants elaborate higher concentrations of proinflammatory cytokines compared to mature cells [17]. IL-18 and IL-12 are upregulated in distal ileum in rat model [18]. IL-10 levels have been shown to be reduced in ileum but increased in serum with babies of NEC [19]. Hepatic inflammatory mediator TNF-α suggests a role of gut-bile axis [20]. Epidermal growth factor has maturational effects on intestinal mucosa and its deficiency predisposes infants to NEC [21]. Similarly Platelet activating factor degrading enzyme (PAF-AH) is decreased in neonates with NEC suggesting role of PAF [22].

6.3. Infective Factors

The epidemics of NEC and isolation of strains of E. coli and Clostridia as well as improvement in attack rate following the implementation of strict infection control policies and decrease in incidence with prophylactic antibiotics validate the role of infection in the pathogenesis of NEC [23]. In a study on 12 neonates with weekly stool examination by gel electrophoresis 3 neonates who developed NEC have abnormal bands for Clostridium perfringens as compared to control infants. In another study on 422 duodenal aspirates collected from 122 VLBW infants no association was found between duodenal colonization with particular strains of Enterobacteriaceae and NEC [24].


7. Preventive Strategies

Various preventive strategies have been tried with an attempt to prevent this disease with high morbidity and mortality. These strategies fall into three categories: those with proven or probable efficacy, those with unproven efficacy or limited data, and experimental strategies.

7.1. Breast Milk

The presence of many protective factors in breast milk supports one of the manifold advantages of human milk [25]. Lucas and Cole in a prospective study on 926 preterm infants noted that confirmed NEC was 6- to 10-times more likely in exclusively formula-fed babies than in those who received exclusive human milk and three times more common in those who received formula plus human milk [26]. Meta-analysis of 4 small clinical trials concluded that infants who received donor human milk were 3 times less likely to develop NEC and 4 times less likely to have confirmed NEC [27].

7.2. Feeding Strategies
7.2.1. Cautious Advancement of Feeds

Cochrane group reviewed 3 good randomized controlled trials comparing slow versus rapid advancement of feeds in preterm neonates receiving parenteral nutrition. There was no significant effect on necrotising enterocolitis. All the three trials were heterogeneous in terms of inclusion criteria (weight) and different definitions used for slow and rapid rates of feeding advancement [28].

7.2.2. Trophic Feeding (Minimal Enteral Nutrition)

Cochrane review included 8 studies which were of poor quality in terms of study design, inability to blind the caregivers, and heterogeneity regarding outcome measures and concluded that there was no significant effect on necrotizing enterocolitis.

7.2.3. Standardized Feeding Regimens (SFR)

The Vermont Oxford network “Got Milk” focus group developed eight potentially better practices implementation of which in three NICUs in USA showed reduction in the incidence of NEC [29]. A recent Meta-analysis has reported that introduction of an SFR reduced incidence of NEC by 87% in LBW infants, 43% in VLBW infants, and overall decrease in the incidence by 29%. However these findings need to be interpreted with caution due to heterogeneity across trials and randomized controlled trials are needed to study the efficacy of SFR [30].

Interventions for lactation support for mothers of VLBW infants are as follows:

  1. “Kangaroo” skin-to-skin contact between mother and infant.
  2. Simultaneous expression of milk from both breasts (using electric pump).
  3. Peer support in hospital and community.
  4. Multidisciplinary staff training and continuous professional development to maintain skilled professional support.
  5. UNICEF “Baby Friendly” accreditation of the associated maternity hospital.

7.3. Probiotics

Probiotics are defined as “live microorganisms which when administered in adequate amounts confer a health benefit on the host”. Compared with healthy, full-term infants, the intestinal microbiota in preterm infants features a low number of species, with typically only 3 bacterial species found at 10 days of age [3133]. Three groups, including enterobacteria such as E. coli and Klebsiella spp., enterococci such as E. faecalis, and staphylococci such as S. epidermidis, S. aureus, and S. haemolyticus, are the most frequently retrieved [32]. All of these facultative anaerobes persist at high levels in the fecal flora of preterm infants and there is significantly delayed colonization with anaerobes, especially Bifidobacteria, compared with that seen in healthy, full-term infants [3133]. It has been suggested that the enteral administration of probiotics to preterm newborns could prevent infections, prevent NEC, and reduce the use of antibiotics [34]. Some other clinical trials of probiotic preparations to decrease the incidence of neonatal NEC are listed in Table 2.

7.4. Prebiotics

The prebiotics are “nondigestible food components that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon and thereby improving host health” [35]. Oligosaccharides that are contained in human breast milk are considered to be the prototype of prebiotics, since they have been shown to facilitate the growth of bifidobacteria and lactobacilli in the colon of breast-fed neonates [3638]. Based on evidence obtained in a search up to January 2004, the committee concluded that only limited studies have evaluated the effects of the addition of prebiotic substances to dietetic products for infants. The committee stated that although the administration of prebiotic oligosaccharides has the potential to increase the total number of bifidobacteria in the feces of infants (including preterm infants), the effects of such administration on different bifidobacteria strains or on different pathogenic bacteria has not been reported. By searching the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and CINAHL databases and proceedings of relevant conferences, the authors identified 4 RCTs that qualified for inclusion in the paper [3942]. A total of only 126 preterm infants were included in the paper. The prebiotic oligosaccharides used in these studies were fructooligosaccharides in one RCT [42] and galactooligosaccharides/fructooligosaccharides in 3 RCTs [3941]. The duration of supplementation ranged from 14 to 30–33 days. Authors of 2 RCTs [40, 41] reported that NEC did not occur in any of their infants. Authors of the other 2 RCTs did not report data related to NEC or sepsis. Meta-analysis of the data from the 2 trials that evaluated stool flora showed a statistically significant increase in bifidobacterial counts in the prebiotic-supplemented group compared with the control group. The authors of the paper concluded that prebiotic-supplemented formula increased stool colony counts of bifidobacteria and lactobacilli in preterm neonates without adversely affecting weight gain. In summary, the quantity and quality of the evidence regarding the effectiveness of the use of specific prebiotics in preterm infants are limited and do not allow one to formulate conclusions regarding the use of prebiotics in clinical practice.

7.5. Synbiotics

The term “synbiotic” is used “when a product contains both probiotics and prebiotics” [43]. In a recently published RCT [44], 90 preterm infants received a dietary supplement containing 2 lactobacillus species plus fructooligosaccharides, a supplement containing several species of Lactobacilli and Bifidobacteria plus fructooligosaccharides, or placebo twice daily for 28 days or until discharge if earlier. The study found that preterm infants who received the supplement containing several species of lactobacilli and bifidobacteria plus fructooligosaccharides were more likely to become colonized with bifidobacteria. There were no significant differences in weight gain or the content of short-chain fatty acids in the stool between groups.

7.6. Antenatal Steroids

Crowley reviewed the literature to assess the effects on fetal and neonatal morbidity and mortality and showed that treatment with antenatal corticosteroids is associated with a reduction in the incidence of RDS and IVH and a trend towards reduction in the incidence of NEC [45]. Possible explanations for the increase in NEC include the increased survival of more immature infants, increased use of antenatal steroids, and perhaps a tendency to institute and advance feeds more rapidly than is prudent, given the improved pulmonary status of these neonates.

7.7. Fluid Restriction

Excess fluid intake has been implicated in the pathogenesis of NEC [46]. Cochrane review which included 3 studies concluded that restricted water intake significantly reduces the risks of morbidities like NEC [47].

7.8. Prophylactic Enteral Antibiotics

The administration of prophylactic oral antibiotics has been investigated in NEC prevention. Evidence to date indicates that oral antibiotics can reduce NEC incidence [48, 49]. A statistically significant increase in the incidence of colonization with resistant bacteria was also shown. Thus routine use of prophylactic antibiotics cannot be recommended [50].

7.9. Lactoferrin Supplementation

Lactoferrin, an antimicrobial glycoprotein present in colostrum and breast milk, is a key component of the mammalian innate response to infection. Lactoferrin has broad microbicidal activity against Gram-positive cocci, Gram-negative bacilli, and Candida species. VLBW infants have low lactoferrin levels and this deficiency is exacerbated by delay in establishing enteral feeding. A recently published Italian multicentre trial examined whether enteral supplementation with exogenous (bovine) lactoferrin for up to 6 weeks, either alone or in combination with a probiotic Lactobacillus, reduced the risk of NEC and invasive nosocomial infection in VLBW infants. The incidence of NEC was decreased in the lactoferrin plus probiotic group only. It is plausible that a more modest independent effect of lactoferrin on the risk of NEC may still exist and further large trials are proposed to investigate this possibility.

7.10. Oral Immunoglobulins

Immunoglobulins are one of many possible factors in human milk responsible for its protective effects on NEC. Neonates have decreased immunoglobulin levels, particularly secretory IgA [51]. Cochrane review included five studies heterogeneous in terms of entry criteria of neonates, use of placebo (none versus albumin), type of immunoglobulin use (combination of IgG/IgA, only IgG, IgG with a trace of IgM and IgA and none using IgA alone), dose of immunoglobulin, and timing of administration [52]. The oral administration of IgG or an IgG/IgA combination did not result in a significant reduction in the incidence of definite NEC. Further trials are needed.

7.11. Immunonutrition: Glutamine and Arginine

VLBW infants who develop NEC have lower plasma levels of the amino acids arginine and glutamine compared with gestation comparable infants who do not develop NEC. In animal models of experimental enterocolitis, glutamine supplementation reduces mucosal damage and lowers the risk of invasive infection and death. Glutamine is abundant in human milk but present only in much lower levels in cow milk formula and absent in standard parenteral nutrition solutions. A relative deficiency of arginine leading to inadequate NO production might predispose the premature infant to inadequate tissue NO levels, vasoconstriction, ischemic-reperfusion injury, and ultimately the development of NEC. Amin et al. in a prospective trial on 152 neonates showed that the incidence of NEC was significantly lower in group receiving supplemental arginine with feeds till 28 days compared with group not receiving supplemental arginine with feeds. However, literature is limited to recommend any practice [53].

7.12. Patent Ductus Arteriosus and Nonsteroidal Anti-inflammatory Agents

Diastolic steal from a patent ductus arteriosus (PDA) leading to splanchnic under perfusion has been implicated as a risk factor for the development of NEC [54]. Cassady et al. in a small randomized trial have shown that early prophylactic ligation of PDA reduces the risk of NEC [55]. Furthermore, meta-analyses of good quality randomized controlled trials of nonsteroidal anti-inflammatory agents for patent ductus arteriosus closures have not detected any significant effects on the incidence of NEC.

7.13. Polyunsaturated Fatty Acids Supplements

Long chain fatty acids have been proposed to modulate inflammation and immunity. Recently Carlson has shown reduced incidence of NEC in group supplemented with egg phospholipids [56].

7.14. Acidification of Gastric Contents

Carrion and Egan have documented that acidifying the feedings of preterm neonates to a pH low enough to inhibit gastric bacterial proliferation significantly lowers the risk of NEC [57]. Evidence exists that the use of histamine-receptor type 2 (H2) blockers to suppress gastric acidity is associated with a higher risk of NEC (and nosocomial infection) in VLBW infants. Given lack of evidence that gastrooesophageal reflux is a cause of apnoea in preterm infants, it is recommended that use of H2 blockers should be restricted until robust evidence that benefits outweigh harmful effects is obtained.


8. Surgical Management

Up to 50% of neonates with NEC develop advanced disease that requires operative treatment [58]. Butter et al. have reported an increase in operative rate from 46% in 1990–1994 to 69% in 1995–1999 primarily due to increase in percentage of stage III patients and post-NEC strictures [59]. The indications for surgery include presence of pneumoperitoneum, indicating perforation of the intestine, clinical deterioration despite maximal medical treatment, abdominal mass with intestinal obstruction, and development of intestinal stricture. Relative indications include fixed dilated intestinal loop, presence of portal gas, thrombocytopenia, and rapid fall in platelet count [60]. There are two multicentric prospective trials underway evaluating primary peritoneal drainage and laparotomy for babies with NEC (NET trial in <1000 Gms in UK and NECSTEPS trial in <1500 Gms neonates in USA).


9. Conclusion

NEC continues to be one of the most devastating and unpredictable diseases affecting premature infants. It remains a disease of high morbidity and mortality with adverse long-term outcomes. Promising strategies for minimizing NEC that merit further evaluation include the use of prebiotics and probiotics and the use of arginine supplementation. Large multicentre trials within collaborative networks will be needed to address these questions. Hopefully, future studies aimed at understanding premature intestinal defenses, dietary and bacterial influences, and possible genetic predispositions will lead to development of new prevention and treatment strategies.


References
1. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada, 2002.
2. Blakey JL,Lubitz L,Barnes GL. Development of gut colonisation in pre-term neonatesJournal of Medical MicrobiologyYear: 19821545195292-s2.0-00203792706816935
3. Gewolb IH,Schwalbe RS,Taciak VL,Harrison TS,Panigrahi P. Stool microflora in extremely low birthweight infantsArchives of Disease in ChildhoodYear: 1999803F167F1732-s2.0-003284410210212075
4. Magne F,Suau A,Pochart P,Desjeux JF. Fecal microbial community in preterm infantsJournal of Pediatric Gastroenterology and NutritionYear: 20054143863922-s2.0-2604444018316205503
5. Gewolb IH,Schwalbe RS,Taciak VL,Harrison TS,Panigrahi P. Stool microflora in extremely low birthweight infantsArchives of Disease in ChildhoodYear: 1999803F167F1732-s2.0-003284410210212075
6. Narang A,Rao R,Bhakoo ON. Neonatal necrotizing enterocolitis an epidemiological studyIndian PediatricsYear: 19933010120712142-s2.0-00276765448077012
7. Snyder CL,Gittes GK,Patrick Murphy J,Sharp RJ,Ashcraft KW,Amoury RA. Survival after necrotizing enterocolitis in infants weighing less than 1,000 g: 25 years’ experience at a single institutionJournal of Pediatric SurgeryYear: 19973234344372-s2.0-00309616159094011
8. Schullinger JN,Mollitt DL,Vinocur CD. Neonatal necrotizing enterocolitis. Survival, management, and complications: a 25-year studyAmerican Journal of Diseases of ChildrenYear: 198113576126142-s2.0-00194624107246488
9. Kanto WP,Wilson R,Ricketts RR. Management and outcome of necrotizing enterocolitisClinical PediatricsYear: 198524279822-s2.0-00219237893967449
10. Grosfeld JL,Cheu H,Schlatter M,West KW,Rescorla FJ. Changing trends in necrotizing enterocolitis: experience with 302 cases in two decadesAnnals of SurgeryYear: 199121433003072-s2.0-00263766981929611
11. Bashiri A,Zmora E,Sheiner E,Hershkovitz R,Shoham-Vardi I,Mazor M. Maternal hypertensive disorders are an independent risk factor for the development of necrotizing enterocolitis in very low birth weight infantsFetal Diagnosis and TherapyYear: 20031864044072-s2.0-014222788814564109
12. Sankaran K,Puckett B,Lee DS,et al. Variations in incidence of necrotizing enterocolitis in Canadian neonatal intensive care unitsJournal of Pediatric Gastroenterology and NutritionYear: 20043943663722-s2.0-1764442022315448426
13. Luig M,Lui K. Epidemiology of necrotizing enterocolitis—part II: risks and susceptibility of premature infants during the surfactant era: a regional studyJournal of Paediatrics and Child HealthYear: 20054141741792-s2.0-1844437995315813870
14. Guthrie SO,Gordon PV,Thomas V,Thorp JA,Peabody J,Clark RH. Necrotizing enterocolitis among neonates in the United StatesJournal of PerinatologyYear: 20032342782852-s2.0-003848064612774133
15. Hackam DJ,Upperman JS,Grishin A,Ford HR. Disordered enterocyte signaling and intestinal barrier dysfunction in the pathogenesis of necrotizing enterocolitisSeminars in Pediatric SurgeryYear: 200514149572-s2.0-1764441357715770588
16. Papparella A,Deluca FG,Oyer CE,Pinar H,Stonestreet BS. Ischemia-reperfusion injury in the intestines of newborn pigsPediatric ResearchYear: 19974221801882-s2.0-00308587789262220
17. Nanthakumar NN,Fusunyan RD,Sanderson I,Walker WA. Inflammation in the developing human intestine: a possible pathophysiologic contribution to necrotizing enterocolitisProceedings of the National Academy of Sciences of the United States of AmericaYear: 20009711604360482-s2.0-003470505310823949
18. Halpern MD,Holubec H,Dvorakova K,et al. Up-regulation of IL-18 and IL-12 in the ileum of neonatal rats with necrotizing enterocolitisPediatric ResearchYear: 20025167337392-s2.0-003610407712032269
19. Edelson MB,Bagwell CE,Rozycki HJ. Circulating pro- and counterinflammatory cytokine levels and severity in necrotizing enterocolitisPediatricsYear: 199910347667712-s2.0-003302993210103300
20. Halpern MD,Holubec H,Dominguez JA,Meza YG,Williams CS,Ruth MC. Hepatic inflammatory mediators contribute to intestinal damage in NecrotisingenterocolitisJournal of Physiology, Gastrointestinal and Liver PhysiologyYear: 20052884G755G762
21. Pollack PF,Goda T,Colony PC. Effects of enterally fed epidermal growth factor on the small and large intestine of the suckling ratRegulatory PeptidesYear: 19871731211322-s2.0-00231247443495822
22. Caplan MS,Lickerman M,Adler L,Dietsch GN,Yu A. The role of recombinant platelet-activating factor acetylhydrolase in a neonatal rat model of necrotizing enterocolitisPediatric ResearchYear: 19974267797832-s2.0-00306645019396557
23. Lee JS,Polin RA. Treatment and prevention of necrotizing enterocolitisSeminars in NeonatologyYear: 2003864494592-s2.0-034487321915001117
24. Hoy CM,Wood CM,Hawkey PM,Puntis JWL. Duodenal microflora in very-low-birth-weight neonates and relation to necrotizing enterocolitisJournal of Clinical MicrobiologyYear: 20003812453945472-s2.0-003446043011101593
25. Undergrove K. Necrotisingenterocolitis: the evidence for the use of human milk in prevention and treatmentJournal of Human LactationYear: 200420333533915296589
26. Lucas A,Cole TJ. Breast milk and neonatal necrotising enterocolitisLancetYear: 19903368730-8731151915232-s2.0-00256698751979363
27. McGuire W,Anthony MY. Donor human milk versus formula for preventing necrotising enterocolitis in preterm infants: systematic reviewArchives of Disease in ChildhoodYear: 2003881F11F142-s2.0-003723021312496220
28. Kennedy KA,Tyson JE,Chamnanvanakij S. Rapid versus slow rate of advancement of feedings for promoting growth and preventing necrotizing enterocolitis in parenterally fed low-birth-weight infantsCochrane Database of Systematic ReviewsYear: 20002CD0012412-s2.0-0012467508
29. Kuzma-O’Reilly B,Duenas ML,Greecher C,et al. Evaluation, development, and implementation of potentially better practices in neonatal intensive care nutritionPediatricsYear: 20031114e461e4702-s2.0-003739238312671166
30. Patole SK,De Klerk N. Impact of standardised feeding regimens on incidence of neonatal necrotising enterocolitis: a systematic review and meta-analysis of observational studiesArchives of Disease in ChildhoodYear: 2005902F147F1512-s2.0-1474429190115724039
31. Blakey JL,Lubitz L,Barnes GL. Development of gut colonisation in pre-term neonatesJournal of Medical MicrobiologyYear: 19821545195292-s2.0-00203792706816935
32. Gewolb IH,Schwalbe RS,Taciak VL,Harrison TS,Panigrahi P. Stool microflora in extremely low birthweight infantsArchives of Disease in ChildhoodYear: 1999803F167F1732-s2.0-003284410210212075
33. Magne F,Suau A,Pochart P,Desjeux JF. Fecal microbial community in preterm infantsJournal of Pediatric Gastroenterology and NutritionYear: 20054143863922-s2.0-2604444018316205503
34. Caplan MS,Jilling T. Neonatal necrotizing enterocolitis: possible role of probiotic supplementationJournal of Pediatric Gastroenterology and NutritionYear: 2000302S18S222-s2.0-003403875110749397
35. Gibson GR,Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebioticsJournal of NutritionYear: 19951256140114122-s2.0-00290133227782892
36. Adiv OE,Berant M,Shamir R. New supplements to infant formulasPediatric Endocrinology ReviewsYear: 2004222162242-s2.0-1344425140516429109
37. Dai D,Walker WA. Protective nutrients and bacterial colonization in the immature human gutAdvances in PediatricsYear: 1999463533822-s2.0-003328633410645469
38. Quigley EMM,Quera R. Small intestinal bacterial overgrowth: roles of antibiotics, prebiotics, and probioticsGastroenterologyYear: 20061302S78S902-s2.0-3214446488916473077
39. Boehm G,Lidestri M,Casetta P,et al. Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of faecal bifidobacteria in preterm infantsArchives of Disease in ChildhoodYear: 2002863F178F1812-s2.0-003625558511978748
40. Mihatsch W,Hoegel J,Pohlandt F. Prebiotic oligosaccharides reduce stool viscosity and accelerate gastrointestinal transport in preterm infantsActa PaediatricaYear: 20069578438482-s2.0-3374761123516801182
41. Indrio F,Riezzo G,Montagna O,Valenzano E,Mautone A,Boehm G. Effect of a prebiotic mixture of short chain galacto-oligosaccharides and long chain fructo-oligosaccharides on gastric motility in preterm infantsJournal of Pediatric Gastroenterology and NutritionYear: 2007article e122
42. Kapiki A,Costalos C,Oikonomidou C,Triantafyllidou A,Loukatou E,Pertrohilou V. The effect of a fructo-oligosaccharide supplemented formula on gut flora of preterm infantsEarly Human DevelopmentYear: 20078353353392-s2.0-3414709468316978805
43. Schrezenmeir J,De Vrese M. Probiotics, prebiotics, and synbiotics—approaching a definitionAmerican Journal of Clinical NutritionYear: 2001732, supplement361S364S2-s2.0-003515073711157342
44. Underwood MA,Salzman NH,Bennett SH,et al. A randomized placebo-controlled comparison of 2 prebiotic/probiotic combinations in preterm infants: impact on weight gain, intestinal microbiota, and fecal short-chain fatty acidsJournal of Pediatric Gastroenterology and NutritionYear: 20094822162252-s2.0-6614915387819179885
45. Crowley P,Chalmers I,Keirse MJNC. The effects of corticosteroid administration before preterm delivery: an overview of the evidence from controlled trialsBritish Journal of Obstetrics and GynaecologyYear: 199097111252-s2.0-00252326492137711
46. Bell EF,Warburton D,Stonestreet BS,Oh W. High-volume fluid intake predisposes premature infants to necrotising enterocolitisLancetYear: 197928133p. 902-s2.0-0018790129
47. Bell EF,Acarregui MJ. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infantsCochrane Database of Systematic ReviewsYear: 20002CD0005032-s2.0-0033633306
48. Egan EA,Nelson RM,Mantilla G,Eitzman DV. Additional experience with routine use of oral kanamycin prophylaxis for necrotizing enterocolitis in infants under 1,500 gramsThe Journal of PediatricsYear: 19779023313322-s2.0-0017455201830936
49. Siu YK,Ng PC,Fung SCK,et al. Double blind, randomised, placebo controlled study of oral vancomycin in prevention of necrotising enterocolitis in preterm, very low birthweight infantsArchives of Disease in ChildhoodYear: 1998792F105F1092-s2.0-156443839879828735
50. Bury RG,Tudehope D. Enteral antibiotics for preventing necrotising enterocolitis in low birthweight or preterm infantsCochrane Database of Systematic ReviewsYear: 20002CD0004052-s2.0-0033633413
51. Burgio GR,Lanzavecchia A,Plebani A. Ontogeny of secretory immunity: levels of secretory IgA and natural antibodies in salivaPediatric ResearchYear: 19801410111111142-s2.0-00189272077008011
52. Foster J,Cole M. Oral immunoglobulin for preventing necrotizing enterocolitis in preterm and low birth-weight neonatesCochrane Database of Systematic ReviewsYear: 20041CD0018162-s2.0-2942722443
53. Amin HJ,Zamora SA,McMillan DD,et al. Arginine supplementation prevents necrotizing enterocolitis in the premature infantJournal of PediatricsYear: 200214044254312-s2.0-003626113112006956
54. Ryder RW,Shelton JD,Guinan ME. Necrotisingenterocolitis: a prospective multicenter investigationAmerican Journal of EpidemiologyYear: 19801125136
55. Cassady G,Crouse DT,Kirklin JW,et al. A randomized, controlled trial of very early prophylactic ligation of the ductus arteriosus in babies who weighed 1000 g or less at birthNew England Journal of MedicineYear: 198932023151115162-s2.0-00243326132498657
56. Carlson SE,Montalto MB,Ponder DL,Werkman SH,Korones SB. Lower incidence of necrotizing enterocolitis in infants fed a preterm formula with egg phospholipidsPediatric ResearchYear: 19984444914982-s2.0-00317175429773836
57. Carrion V,Egan EA. Prevention of necrotisingenterocolitisJournal of Pediatric Gastroenterology and NutritionYear: 1990113173232246712
58. Kosloske AM. Surgey of necrotisingenterocolitisWorld Journal of SurgeryYear: 198592772843993059
59. Bütter A,Flageole H,Laberge JM. The changing face of surgical indications for necrotizing enterocolitisJournal of Pediatric SurgeryYear: 20023734964992-s2.0-003618535711877675
60. Pierro A. The surgical management of necrotising enterocolitisEarly Human DevelopmentYear: 200581179852-s2.0-1354427336215707718
61. Hoyos AB. . Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit.International Journal of Infectious DiseasesYear: 19993197e202
62. Lin HC,Su BH,Chen AC,Lin TW,Tsai CH,Yeh TF. Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infantsPediatricsYear: 2005115, article 1e4
63. Bin-Nun A,Bromiker R,Wilschanski M,Kaplan M,Rudensky B,Caplan M. Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonatesJournal of PediatricsYear: 2005147192e6
64. Lin HC,Hsu CH,Chen HL,Chung MY,Hsu JF,Lien RI. Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trialPediatricsYear: 2008122693e700

Article Categories:
  • Review Article


Previous Document:  Evaluation of manual and two-rotary niti retreatment systems in removing gutta-percha obturated with...
Next Document:  A high dose intravenous immunoglobulin therapy for women with four or more recurrent spontaneous abo...