Document Detail


Nano-TiO(2)/polyurethane composites for antibacterial and self-cleaning coatings.
MedLine Citation:
PMID:  23037881     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
Grafting from polymerization was used to synthesize nano-titania/polyurethane (nTiO(2)/polyurethane) composite coatings, where nTiO(2) was chemically attached to the backbone of the polyurethane polymer matrix with a bifunctional monomer, 2,2-bis(hydroxymethyl) propionic acid (DMPA). This bifunctional monomer can coordinate to nTiO(2) through an available -COOH group, with two available hydroxyl groups that can react with diisocyanate terminated pre-polyurethane through step-growth polymerization. The coordination reaction was monitored by FTIR and TGA, with the coordination reaction found to follow first order kinetics. After step-growth polymerization, the polyurethane nanocomposites were found to be stable on standing with excellent distribution of Ti in the polymer matrix without any significant agglomeration compared to simple physical mixtures of nTiO(2) in the polyurethane coatings. The functionalized nTiO(2)-polyurethane composite coatings showed excellent antibacterial activity against gram-negative bacteria Escherichia coli; 99% of E. coli were killed within less than one hour under solar irradiation. Self-cleaning was also demonstrated using stearic acid as a model for 'dirt'.
Authors:
P A Charpentier; K Burgess; L Wang; R R Chowdhury; A F Lotus; G Moula
Publication Detail:
Type:  Journal Article     Date:  2012-10-04
Journal Detail:
Title:  Nanotechnology     Volume:  23     ISSN:  1361-6528     ISO Abbreviation:  Nanotechnology     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-05     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101241272     Medline TA:  Nanotechnology     Country:  England    
Other Details:
Languages:  eng     Pagination:  425606     Citation Subset:  IM    
Affiliation:
Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Proton defect solvation and dynamics in aqueous acid and base.
Next Document:  Estimation of inhibitory effects of hemicellulosic wood hydrolysate inhibitors on PHA production by ...