Document Detail

Myelodysplastic syndrome with myelofibrosis transformed to a precursor B-cell acute lymphoblastic leukemia: a case report with review of the literature.
Jump to Full Text
MedLine Citation:
PMID:  22937321     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Myelodysplastic syndromes (MDS) comprise a group of heterogeneous clonal hematopoietic cell disorders characterized by cytopenias, bone marrow hypercellularity, and increased risk of transformation to acute leukemias. MDS usually transformed to acute myeloid leukemia, and transformation to acute lymphoblastic leukemia (ALL) is rare. Herein, we report a unique patient who presented with MDS with myelofibrosis. Two months after the initial diagnosis, she progressed to a precursor B-cell acute lymphoblastic leukemia. She was treated with induction therapy followed by allogenic stem cell transplantation. She was alive and doing well upon last followup. We have also reviewed the literature and discussed the clinicopathologic features of 36 MDS patients who progressed to ALL reported in the literature.
Ayed A Algarni; Mojtaba Akhtari; Kai Fu
Publication Detail:
Type:  Journal Article     Date:  2012-03-29
Journal Detail:
Title:  Case reports in hematology     Volume:  2012     ISSN:  2090-6579     ISO Abbreviation:  Case Rep Hematol     Publication Date:  2012  
Date Detail:
Created Date:  2012-08-31     Completed Date:  2012-08-31     Revised Date:  2013-04-02    
Medline Journal Info:
Nlm Unique ID:  101576456     Medline TA:  Case Rep Hematol     Country:  United States    
Other Details:
Languages:  eng     Pagination:  207537     Citation Subset:  -    
Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Case Report Hematol
Journal ID (iso-abbrev): Case Report Hematol
Journal ID (publisher-id): CRIM.HEMATOLOGY
ISSN: 2090-6560
ISSN: 2090-6579
Publisher: Hindawi Publishing Corporation
Article Information
Download PDF
Copyright © 2012 Ayed A. Algarni et al.
Received Day: 8 Month: 12 Year: 2011
Accepted Day: 15 Month: 1 Year: 2012
Print publication date: Year: 2012
Electronic publication date: Day: 29 Month: 3 Year: 2012
Volume: 2012E-location ID: 207537
ID: 3420696
PubMed Id: 22937321
DOI: 10.1155/2012/207537

Myelodysplastic Syndrome with Myelofibrosis Transformed to a Precursor B-Cell Acute Lymphoblastic Leukemia: A Case Report with Review of the Literature
Ayed A. Algarni1
Mojtaba Akhtari2
Kai Fu1*
1Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
2Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
Correspondence: *Kai Fu:
[other] Academic Editors: D. J. Allsup and G. Feher

1. Introduction

Myelodysplastic syndrome (MDS) comprises a group of heterogeneous clonal hematopoietic cell disorders characterized by cytopenias, bone marrow hypercellularity, and increased risk of transformation to acute leukemias; usually to acute myeloid leukemia (in 20–50% of MDS patients). Transformation of MDS to acute lymphoblastic leukemia (ALL) is rare. To date, there are only 35 reported cases of MDS progressed to ALL, to the best of our knowledge. Herein, we report a unique patient who presented with MDS and myelofibrosis and progressed to precursor B-cell acute lymphoblastic leukemia shortly after the initial presentation.

2. Case Report

A 53-year-old Caucasian woman with a known history of diabetes mellitus type 2, osteoarthritis, hypertension, and hyperlipidemia presented, after a possible acute upper respiratory tract infection, with shortness of breath, fatigue, nausea, and vomiting. Initial physical examination showed no lymphadenopathy or hepatosplenomegaly. Her CBC revealed pancytopenia with white blood cell (WBC) count = 1.8 × 109/L, hemoglobin = 4.5 g/dL, mean corpuscular volume (MCV) = 84.8 fL, hematocrit = 12.5, and platelet count = 83 × 103/cmm.

She underwent a bone marrow aspirate and biopsy. The bone marrow aspiration was unsuccessful. The bone marrow biopsy showed a markedly hypercellular bone marrow at 90% cellularity with panhyperplasia (Figure 1). Mild-to-moderate erythroid dysplasia was present in the form of binucleation, nuclear blebbing and irregular nuclear contours. The megakaryocytes were moderately increased with focal abnormal clustering and occasional dyspoietic forms like nuclear hypolobation and micromegakaryocytes. The myeloid precursors showed abnormal localization in the core biopsy without significant morphological dyspoiesis. Blasts were not increased at 0.4%, with only rare scattered CD34-positive cells in the core biopsy by immunostains. Scattered clusters of small lymphocytes with occasional irregular nuclear contours were present; however, no clusters of lymphoblasts are noted. Special stains for reticulin and collagen fibers showed marked reticulin fibrosis without significant collagenous fibrosis. Conventional cytogenetic studies showed a normal female chromosome karyotype. Florescence in situ hybridization (FISH) studies using probes for MDS including MLL gene (11q23) region, monosomy 7, and trisomy 8 and for deletions of 5q31, 7q31 and 20q12 were performed and were negative. Molecular studies for BCR-ABL and JAK2 mutation studies were also negative. A diagnosis of myelodysplastic syndrome (MDS) with myelofibrosis was rendered. Regarding the MDS International Prognostic Scoring Classification [26], the patient had 3 cytopenias with normal conventional and FISH cytogenetic studies, so her overall score would be 0.5, and she would fall into the intermediate 1 risk category. She was started on treatment for her MDS, including Erythropoietin and G-CSF.

Two months after the initial presentation, she was evaluated for a possible allogeneic stem cell transplantation, and her CBC revealed severe pancytopenia with WBC = 1.0 × 109/L, hemoglobin = 8.7 g/dL, hematocrit = 25.1%, MCV = 82 fL, and platelets = 74.0 × 103/uL. Rare circulating blasts were identified in the peripheral blood smears (Figure 2(a)). Bone marrow biopsy was then performed and showed markedly hypercellular (98%) with 82% B-lymphoblast population (Figures 2(b)2(f)). The blasts were intermediate sized with fine chromatin, small nucleoli, nuclear folding, and scant cytoplasm. No granules or Auer rods were identified. Cytochemical stains for myeloperoxidase, Sudan black B, and dual esterase were all negative. Flow cytometric analysis showed a lymphoblast population expressing CD19, CD24, and bright CD38 at 71% of ficolled cells, consistent with precursor B-cell acute lymphoblastic leukemia. Clonality was also confirmed by a positive molecular study for immunoglobulin heavy chain gene rearrangement. Severe reticulin fibrosis was also present. A final diagnosis of precursor B-cell acute lymphoblastic leukemia (pre-B ALL) and marked reticulin fibrosis was made. Cerebrospinal fluid was negative for lymphoblasts. She was started on an induction therapy with hyper-CVAD (cyclophosphamide, vincristine, doxorubicin/adriamycin, and dexamethasone). She also received intrathecal prophylaxis (methotrexate and cytarabine) and tolerated well.

Follow-up bone marrow at 28 days after her chemotherapy showed a hypocellular marrow (20%) with panhypoplasia, persistent reticulin fibrosis, but no residual leukemic blasts were seen. Flow cytometry analysis was also negative for blasts. Patient subsequently underwent allogenic stem cell transplantation, seven months after her initial diagnosis of MDS, and five months after she developed pre-B ALL. She tolerated the procedure and was alive upon the last follow-up.

3. Discussion

Myelodysplastic syndromes (MDS) comprise a heterogeneous group of hematopoietic cell disorders characterized by cytopenias, bone marrow hypercellularity, and abnormal blood cell differentiation (ineffective hematopoiesis) [27]. Myelofibrosis and/or sclerosis (reticulin/collagen) can occur in wide variety of neoplastic and nonneoplastic conditions of the bone marrow disorders including MDS [28]. About 5% to 10% of patients with primary MDS and up to 50% of therapy-related MDS have significantly increased marrow reticulin fibers or even collagen fibrosis. MDS with myelofibrosis is characterized by a marked increase in bone marrow reticulin fibers and presents with pancytopenia and minimal or absent organomegaly.

The prognosis for patients with MDS with fibrosis is generally worse than that for MDS without fibrosis [2934]; however, controversies exist [35, 36]. The variation may be secondary to the case selection in reported series. In one of the largest series of retrospective study of 352 MDS patients, the investigators reported a median survival of 9.6 months in patients with fibrosis compared to 17.4 months in those without fibrosis [29]. However, this study was performed before the development of the IPSS, so the two groups were not stratified according to other features now known to affect the survival in MDS [26]. There are other studies showing that myelofibrosis has prognostic relevance independent of the IPSS classification of MDS [3133, 37]. Overall, patients with myelodysplastic syndrome and myelofibrosis are reported to have shorter survival times than those without these features [2729, 3740].

The clinical implications of increased reticulin seem to be different from those of increased collagen: the amount of bone marrow reticulin shows little correlation with the severity of the underlying hematologic disease while the presence and amount of collagen fibers are strongly correlated with abnormal blood counts and poor outcome [39]. Moreover, reticulin fibrosis is often reversible after therapeutic intervention, while collagen fibrosis is less likely to be modified by treatment. Historical observations suggested that bone marrow fibrosis might also affect hematopoietic reconstitution after allogeneic stem cell transplantation. In one study, the authors found a higher risk of graft failure and delayed neutrophil engraftment as well as a significantly higher risk of relapse in patients with severe bone marrow fibrosis compared to those with no or moderate fibrosis [39].

Approximately 20–50% of cases of MDS eventually progress to acute myelogenous leukemia, while progression of MDS into acute lymphoblastic leukemia is rare [1]. In the study of Warlick and Miller, 15% (6/41) of cases of acute leukemia transformation after primary MDS show hybrid blast phenotype with both myeloid and lymphoid markers expressed [26]. The MDS progression to pure ALL is indeed a rare phenomenon, and to date there are only 35 case reports of such progression (Summary in Table 1). This phenomenon could be explained by the fact that MDS is a disorder of the pluripotent hematopoietic stem cell. Nevertheless, Ogata et al. performed flow cytometric studies on blood and bone marrow samples from 116 patients with MDS and AML and demonstrated that a high proportion of the enriched blast cells (EBCs) from almost all MDS patients showed an immunophenotype of committed myeloid precursors (CD34+/CD38+/HLA-DR+/CD13+/CD33+) regardless of the disease subtype. They concluded that MDS EBCs often coexpressed stem cell antigens and late-stage myeloid antigens asynchronously, but rarely expressed T- and B-lymphoid cell-specific antigens [41].

Including our case, the median age of MDS patients who were reported to have later ALL transformation was 53.5 years (9–90 years). The transformation occurred between 2 and 50 months after the primary diagnosis, usually less than 2 years. A male predominance (M : F = 3 : 1) is evident. The common types of myelodysplasia associated with ALL transformation include and refractory anemia (31%, 11/36), refractory anemia with excess blasts (39%, 14/36), refractory anemia with ring sideroblasts (22%, 8/36). One case of eosinophilic MDS (2.5%), one case of chronic myelomonocytic leukemia (2.5%), and our case MDS with myelofibrosis (2.5%) have also been reported.

From the 22 cases in which the data were available, eight patients were refractory to treatment or died early during induction therapy. Ten patients achieved complete remission (CR) and 2 achieved partial remission (PR). The patients with T-ALL transformation had better prognosis than those with B-cell ALL.

4. Conclusion

Herein, we described a unique patient with MDS and myelofibrosis transformed to a pre-B acute lymphoblastic leukemia, which supports the hypothesis that MDS is a disorder of the pluripotent hematopoietic stem cells. However, the underlying mechanisms of lymphoid transformation are not well defined. Further studies may be necessary for better understanding of the mechanism in order to develop better management plans for these patients.

1. Disperati P,Ichim CV,Tkachuk D,Chun K,Schuh AC,Wells RA. Progression of myelodysplasia to acute lymphoblastic leukaemia: implications for disease biologyLeukemia ResearchYear: 200630223323916046234
2. Goel R,Kumar R,Bakhshi S. Transformation of childhood MDS-refractory anemia to acute lymphoblastic leukemiaJournal of Pediatric Hematology/OncologyYear: 2007291072572717921857
3. Sato N,Nakazato T,Kizaki M,Ikeda Y,Okamoto S. Transformation of myelodysplastic syndrome to acute lymphoblastic leukemia: a case report and review of the literatureInternational Journal of HematologyYear: 200479214715115005342
4. Kohno T,Amenomori T,Atogami S,et al. Progression from myelodysplastic syndrome to acute lymphoblastic leukaemia with Philadelphia chromosome and p190 BCR-ABL transcriptBritish Journal of HaematologyYear: 19969323893918639433
5. Ikeda T,Sato K,Yamashita T,et al. Burkitt’s acute lymphoblastic leukaemia transformatation after myelodysplastic syndromeBritish Journal of HaematologyYear: 20011151697111722413
6. Follows GA,Owen RG,Ashcroft AJ,Parapia LA. Eosinophilic myelodysplasia transforming to acute lymphoblastic leukaemiaJournal of Clinical PathologyYear: 199952538838910560363
7. Abruzzese E,Buss D,Rainer R,Pettenati MJ,Rao PN. Progression of a myelodysplastic syndrome to pre-B acute lymphoblastic leukemia: a case report and cell lineage studyAnnals of HematologyYear: 199673135388695722
8. Pajor L,Matolcsy A,Vass JA,et al. Phenotypic and genotypic analyses of blastic cell population suggest that pure B-lymphoblastic leukemia may arise from myelodysplastic syndromeLeukemia ResearchYear: 199822113179585074
9. Lima CS,de Souza CA,Cardinalli IA,Lorand-Metze I. Lymphoblastic transformation of myelodysplastic syndromeSão Paulo Medical JournalYear: 1997115415081512
10. Ascensao JL,Kay NE,Wright JJ. Lymphoblastic transformation of myelodysplastic syndromeAmerican Journal of HematologyYear: 19862244314343460328
11. Bonati A,Delia D,Starcich R. Progression of a myelodysplastic syndrome to pre-B acute lymphoblastic leukaemia with unusual phenotypeBritish Journal of HaematologyYear: 19866434874913539173
12. Escudier SM,Albitar M,Robertson LE,Andreeff M,Pierce S,Kantarjian HM. Acute lymphoblastic leukemia following preleukemic syndromes in adultsLeukemiaYear: 19961034734778642864
13. Pereira AM,Tavares de Castro J,Santos EG. T lymphoblastic transformation of refractory anaemia with excess of blastsClinical and Laboratory HaematologyYear: 19857189953874040
14. Kouides PA,Bennett JM. Transformation of chronic myelomonocytic leukemia to acute lymphoblastic leukemia: case report and review of the literature of lymphoblastic transformation of myelodysplastic syndromeAmerican Journal of HematologyYear: 19954921571627771469
15. Barton JC,Conrad ME,Parmley RT. Acute lymphoblastic leukemia in idiopathic refractory sideroblastic anemia: evidence for a common lymphoid and myeloid progenitor cellAmerican Journal of HematologyYear: 1980911091156933843
16. Nagler A,Brenner B,Tatarsky I. Secondary refractory anemia withexcess of blasts in transformation terminating as acute lymphoblasticleukemiaActa HaematologicaYear: 1986761641653101358
17. Inoshita T. Acute lymphoblastic leukemia following myelodysplastic syndromeAmerican Journal of Clinical PathologyYear: 19858422332373861089
18. Berneman ZN,Van Bockstaele D,De Meyer P. A myelodysplastic syndrome preceding acute lymphoblastic leukaemiaBritish Journal of HaematologyYear: 19856023533543859321
19. Hussein KK,Salem Z,Bottomley SS,Livingston RB. Acute leukemia in idiopathic sideroblastic anemia: response to combination chemotherapyBloodYear: 19825936526567059673
20. Naithani R,Kumar R,Saxena R,Mahapatra M. Transformation of myelodysplastic syndrome to T-cell acute lymphoblastic leukemia in a young adultPediatric Hematology and OncologyYear: 200926210010219322741
21. Miguel JFS,Hernandez JM,Gonzalez-Sarmiento R,et al. Acute leukemia after a primary myelodysplastic syndrome: immunophenotypic, genotypic, and clinical characteristicsBloodYear: 19917837687741859889
22. Neame PB,Soamboonsrup P,Browman G. Simultaneous or sequential expression of lymphoid and myeloid phenotypes in acute leukemiaBloodYear: 19856511421483880643
23. Eridani S,Chan LC,Halil O,Pearson TC. Acute biphenotypic leukaemia (myeloid and null-ALL type) supervening in a myelodysplastic syndromeBritish Journal of HaematologyYear: 19856135255293864486
24. Hehlmann R,Zonnchen B,Thiel E,Walther B. Idiopathic refractory sideroachrestic anemia (IRSA) progressing to acute mixed lymphoblastic-myelomonoblastic leukemia. Case report and review of the literatureBlutYear: 198346111216571788
25. Komatsu N,Yoshida M,Eguchi M,et al. Simultaneous expression of lymphoid and myeloid phenotypes in acute leukemia arising from myelodysplastic syndromeAmerican Journal of HematologyYear: 19882821031063164979
26. Warlick ED,Miller JS. Myelodysplastic syndromes: the role of the immune system in pathogenesisLeukemia and LymphomaYear: 201152112045204921663505
27. WHO Classificatin of Tumors of Hematopoitic and Lymphoid Tissues, 2008.
28. Steensma DP,Hanson CA,Letendre L,Tefferi A. Myelodysplasia with fibrosis: a distinct entity?Leukemia ResearchYear: 2001251082983811532514
29. Maschek H,Georgii A,Kaloutsi V,et al. Myelofibrosis in primary myelodysplastic syndromes: a retrospective study of 352 patientsEuropean Journal of HaematologyYear: 19924842082141592101
30. Sultan C,Sigaux F,Imbert M,Reyes F. Acute myelodysplasia with myelofibrosis: a report of eight casesBritish Journal of HaematologyYear: 198149111167272222
31. Cunningham I,MacCallum SJ,Nicholls MD,et al. The myelodysplastic syndromes: an analysis of prognostic factors in 226 cases from a single institutionBritish Journal of HaematologyYear: 19959036026067647000
32. Cassano E,Giordano M,Riccardi A,Coci A,Cazzola M. Myelodysplastic syndromes: a multiparametric study of prognostic factors and a proposed scoring systemHaematologicaYear: 19907521411452358204
33. Lambertenghi-Deliliers G,Annaloro C,Oriani A,Soligo D,Pozzoli E,Polli EE. Prognostic relevance of histological findings on bone marrow biopsy in myelodysplastic syndromesAnnals of HematologyYear: 199366285918448244
34. Lambertenghi-Deliliers G,Annaloro C,Oriani A,Soligo D. Myelodysplastic syndrome associated with bone marrow fibrosisLeukemia and LymphomaYear: 199281-251551493471
35. Rios A,Canizo MC,Sanz MA,et al. Bone marrow biopsy in myelodysplastic syndromes: morphological characteristics and contribution to the study of prognostic factorsBritish Journal of HaematologyYear: 199075126332375920
36. Verhoef GEG,De Wolf-Peeters C,Ferrant A,et al. Myelodysplastic syndromes with bone marrow fibrosis: a myelodysplastic disorder with proliferative featuresAnnals of HematologyYear: 19916352352411958747
37. Greenberg P,Cox C,LeBeau MM,et al. International scoring system for evaluating prognosis in myelodysplastic syndromesBloodYear: 1997896207920889058730
38. Ohyashiki K,Sasao I,Ohyashiki JH,et al. Clinical and cytogenetic characteristics of myelodysplastic syndromes developing myelofibrosisCancerYear: 19916811781832049740
39. Della Porta MG,Malcovati L. Myelodysplastic syndromes with bone marrow fibrosisHaematologicaYear: 2010962180183 21282718
40. Lambertenghi-Deliliers G,Orazi A,Luksch R,Annaloro C,Soligo D. Myelodysplastic syndrome with increased marrow fibrosis: a distinct clinico-pathological entityBritish Journal of HaematologyYear: 19917821611661712222
41. Ogata K,Nakamura K,Yokose N,et al. Clinical significance of phenotypic features of blasts in patients with myelodysplastic syndromeBloodYear: 2002100123887389612393641

Article Categories:
  • Case Report

Previous Document:  Multiple myeloma of the thyroid cartilage.
Next Document:  Heparin-induced thrombocytopenia associated with massive intracardiac thrombosis: a case report.