Document Detail


Multisensor system for isotemporal measurements to assess indoor climatic conditions in poultry farms.
MedLine Citation:
PMID:  22778611     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit (R(2) = 0.99) with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated successfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential pressure maps to assess the design and functioning of ventilation system and as a verification and validation (V&V) system of Computational Fluid Dynamics (CFD) simulations in poultry farms.
Authors:
Eliseo Bustamante; Enrique Guijarro; Fernando-Juan García-Diego; Sebastián Balasch; Antonio Hospitaler; Antonio G Torres
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2012-05-04
Journal Detail:
Title:  Sensors (Basel, Switzerland)     Volume:  12     ISSN:  1424-8220     ISO Abbreviation:  Sensors (Basel)     Publication Date:  2012  
Date Detail:
Created Date:  2012-07-10     Completed Date:  2012-11-01     Revised Date:  2013-07-12    
Medline Journal Info:
Nlm Unique ID:  101204366     Medline TA:  Sensors (Basel)     Country:  Switzerland    
Other Details:
Languages:  eng     Pagination:  5752-74     Citation Subset:  IM    
Affiliation:
Institute of Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n 46022 Valencia, Spain. elbusgar@doctor.upv.es
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Animal Husbandry*
Animals
Calibration
Climate*
Poultry*
Temperature
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Electric field guided assembly of one-dimensional nanostructures for high performance sensors.
Next Document:  Magic Ring: a finger-worn device for multiple appliances control using static finger gestures.