Document Detail


Multi-exemplar affinity propagation.
MedLine Citation:
PMID:  23868781     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
The affinity propagation (AP) clustering algorithm has received much attention in the past few years. AP is appealing because it is efficient, insensitive to initialization, and it produces clusters at a lower error rate than other exemplar-based methods. However, its single-exemplar model becomes inadequate when applied to model multisubclasses in some situations such as scene analysis and character recognition. To remedy this deficiency, we have extended the single-exemplar model to a multi-exemplar one to create a new multi-exemplar affinity propagation (MEAP) algorithm. This new model automatically determines the number of exemplars in each cluster associated with a super exemplar to approximate the subclasses in the category. Solving the model is NP--hard and we tackle it with the max-sum belief propagation to produce neighborhood maximum clusters, with no need to specify beforehand the number of clusters, multi-exemplars, and superexemplars. Also, utilizing the sparsity in the data, we are able to reduce substantially the computational time and storage. Experimental studies have shown MEAP's significant improvements over other algorithms on unsupervised image categorization and the clustering of handwritten digits.
Authors:
Chang-Dong Wang; Jian-Huang Lai; Ching Y Suen; Jun-Yong Zhu
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  IEEE transactions on pattern analysis and machine intelligence     Volume:  35     ISSN:  1939-3539     ISO Abbreviation:  IEEE Trans Pattern Anal Mach Intell     Publication Date:  2013 Sep 
Date Detail:
Created Date:  2013-07-22     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9885960     Medline TA:  IEEE Trans Pattern Anal Mach Intell     Country:  United States    
Other Details:
Languages:  eng     Pagination:  2223-37     Citation Subset:  IM    
Affiliation:
Sun Yat-sen University, Guangzhou.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Modeling Natural Images Using Gated MRFs.
Next Document:  Projective multiview structure and motion from element-wise factorization.