Document Detail

Monte Carlo simulated correction factors for machine specific reference field dose calibration and output factor measurement using fixed and iris collimators on the CyberKnife system.
MedLine Citation:
PMID:  22617842     Owner:  NLM     Status:  Publisher    
Monte Carlo (MC) simulation of dose to water and dose to detector has been used to calculate the correction factors needed for dose calibration and output factor measurements on the CyberKnife system. Reference field ionization chambers simulated were the PTW 30006, Exradin A12, and NE 2571 Farmer chambers, and small volume chambers PTW 31014 and 31010. Correction factors for Farmer chambers were found to be 0.7%-0.9% larger than those determined from TRS-398 due mainly to the dose gradient across the chamber cavity. For one microchamber where comparison was possible, the factor was 0.5% lower than TRS-398 which is consistent with previous MC simulations of flattening filter free Linacs. Output factor detectors simulated were diode models PTW 60008, 60012, 60017, 60018, Sun Nuclear edge detector, air-filled microchambers Exradin A16 and PTW 31014, and liquid-filled microchamber PTW 31018 microLion. Factors were generated for both fixed and iris collimators. The resulting correction factors differ from unity by up to +11% for air-filled microchambers and -6% for diodes at the smallest field size (5 mm), and tend towards unity with increasing field size (correction factor magnitude <1% for all detectors at field sizes >15 mm). Output factor measurements performed using these detectors with fixed and iris collimators on two different CyberKnife systems showed initial differences between detectors of >15% at 5 mm field size. After correction the measurements on each unit agreed within ∼1.5% at the smallest field size. This paper provides a complete set of correction factors needed to apply a new small field dosimetry formalism to both collimator types on the CyberKnife system using a range of commonly used detectors.
P Francescon; W Kilby; N Satariano; S Cora
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-5-23
Journal Detail:
Title:  Physics in medicine and biology     Volume:  57     ISSN:  1361-6560     ISO Abbreviation:  -     Publication Date:  2012 May 
Date Detail:
Created Date:  2012-5-23     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0401220     Medline TA:  Phys Med Biol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  3741-3758     Citation Subset:  -    
Department of Medical Physics, ULSS6-36100, Vicenza, Italy.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Békésy's contributions to our present understanding of sound conduction to the inner ear.
Next Document:  A Fresnel zone plate biosensor for signal amplification with enhanced signal-to-noise ratio.