Document Detail

Monocular elevation deficiency: a case series of surgical outcome.
Jump to Full Text
MedLine Citation:
PMID:  24644378     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: Inferior rectus recession, Knapp procedure, partial tendon transposition, and combined procedure are different surgical procedures in the management of monocular elevation deficiency (MED). Only a few studies have been published on the management of this problem. In this study, we report our experience with patients with MED focusing on the indications and types of surgery in the south of Iran.
METHODS: In this case series, a computerized database review on 4773 patients with strabismus was performed and 18 patients diagnosed as having MED who had undergone strabismus surgery were enrolled.
RESULTS: Of the 18 patients, 13 had only hypotropia and 5 had horizontal deviation as well. Preoperative vertical deviation was between 15 and 60 prism diopter (mean±SD=25.8±10.7 PD). Fourteen patients had positive forced duction test on elevation. Seventeen patients had ptosis twelve of them had true ptosis and the remaining 5 had pseudoptosis). The mean postoperative follow-up was 24.4 months. Four patients underwent Knapp procedure, 12 patients underwent inferior rectus recession, and for 2 patients a combined procedure was performed. The mean postoperative hypotropia was 6.1±7.9 PD. Twelve out of the 18 patients were corrected to within five PD of orthophoria and no one was found with overcorrection.
CONCLUSION: Although MED is etiologically multifactorial, satisfactory surgical results can be achieved by judicious selection of the surgical technique based on the results of the forced duction test.
Authors:
Mohammad Reza Talebnejad; Gholam Abbas Roustaei; Mohammad Reza Khalili
Related Documents :
24719538 - Impact of chylothorax on the early post operative outcome after pediatric cardiovascula...
23122668 - Open reduction internal fixation versus hemiarthroplasty versus total hip arthroplasty ...
23725898 - Post-traumatic diaphragmatic hernias - importance of basic radiographic investigations.
24325148 - Lymph node harvest in single incision laparoscopic surgery for colorectal malignancy.
24253548 - What are some tips and pearls for preserving and improving nasal function when performi...
9866368 - Endoscopic ultrasound localization of a pancreatic insulinoma: case report and review o...
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Iranian journal of medical sciences     Volume:  39     ISSN:  0253-0716     ISO Abbreviation:  Iran J Med Sci     Publication Date:  2014 Mar 
Date Detail:
Created Date:  2014-03-19     Completed Date:  2014-03-19     Revised Date:  2014-07-31    
Medline Journal Info:
Nlm Unique ID:  8104374     Medline TA:  Iran J Med Sci     Country:  Iran    
Other Details:
Languages:  eng     Pagination:  102-6     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Iran J Med Sci
Journal ID (iso-abbrev): Iran J Med Sci
Journal ID (publisher-id): IJMS
ISSN: 0253-0716
ISSN: 1735-3688
Publisher: Shiraz University of Medical Sciences, Shiraz, Iran
Article Information
Download PDF
© 2014: Iranian Journal of Medical Sciences
License:
Received Day: 28 Month: 7 Year: 2013
Revision Received Day: 24 Month: 9 Year: 2013
Accepted Day: 13 Month: 10 Year: 2013
Print publication date: Month: 3 Year: 2014
Volume: 39 Issue: 2
First Page: 102 Last Page: 106
PubMed Id: 24644378
ID: 3957008
Publisher Id: ijms-39-102

Monocular Elevation Deficiency: A Case Series of Surgical Outcome
Mohammad Reza Talebnejad, MD
Gholam Abbas Roustaei, MD
Mohammad Reza Khalili, MD
Poostchi Ophthalmology Research Center, Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, Iran
Correspondence: Correspondence: Mohammad Reza Talebnejad, MD; Poostchi Ophthalmology Research Center, Poostchi Street, Shiraz, Iran Tel: +98 711 2302830 Fax: +98 711 2355936 Email: Talebnejadmr@yahoo.com

Introduction

Monocular elevation deficiency (MED) is classified as three subtypes: 1) restrictive form, with features including positive forced duction test (FDT) for elevation, normal elevation forced generation test (FGT), and elevation saccadic velocity, often an extra or deeper lower eyelid fold on attempted upgaze and poor or absent Bell phenomenon; 2) paretic form with elevator muscle weakness, with features including free FDT, reduced elevation FGT and saccadic velocity, in which the Bell phenomenon is often preserved; and 3) a combination form, with features including positive FDT for elevation and reduced FGT and saccadic velocity for elevation.1

Indications for surgery are vertical deviation in primary gaze, deviation-induced amblyopia, diplopia in primary gaze, and restricted binocular fields.2 The goal of surgery is to improve the position of the affected eye in primary gaze, by increasing the field of binocular vision. If restriction to upgaze is demonstrated on the FDT, inferior rectus muscle (IR) restriction is present. An IR recession (IRR) with conjunctival recession should be done in such patients. In cases of secondary IR restriction, the hypotropia will persist after IRR because of primary superior rectus muscle (SR) palsy. In such cases, a Knapp procedure should be performed in addition to IRR.2 If the FDT is non-restrictive, the affected patient has either SR paresis or supranuclear MED and the Knapp procedure should be performed.3 A partial tendon transposition could be considered if a patient has a prior IRR, and has <25 prism diopter (PD) vertical deviation in primary gaze, or if the patient does not have a prior IRR and the deviation in primary gaze is <10 PD.4 In the Knapp procedure, all the tendons of the medial and lateral rectus muscles are transposed to the insertion of the superior rectus muscle, whereas in the partial Knapp procedure, half of the tendons of the medial and lateral rectus muscles are transposed to the insertion of the superior rectus muscle.1

The purpose of this case series was to evaluate the results of different surgical procedures based on the results of the FDT in patients with MED in our center. It is the first report of different surgical procedures in patients with MED in the south of Iran.


Patients and Methods

In this case series, a computerized database review was performed at our tertiary ophthalmology center on 4773 patients with strabismus who had undergone strabismus operation between August 2006 and May 2012, searching for patients with MED. A case series retrospective chart review was performed and patients with a positive history of trauma or with a diagnosis of myasthenia gravis, thyroid ophthalmopathy, and Brown syndrome were excluded. Finally, 18 patients diagnosed as having MED who had undergone strabismus surgery were enrolled. The study was registered with our institutional Review Board and approved by the institutional Ethics Committee.

Complete ophthalmic examination, visual acuity assessment, ocular motility, slit lamp examination, external eye examination, indirect ophthalmoscopy, and refraction were performed. Visual acuity assessment was according to the standard Snellen chart in cooperative patients and fixation pattern in preverbal children. Pre- and postoperative eye deviation measurements were based on the prism-cover test in adults and the Hirschberg test on children without cooperation. The evaluation of the FDT was done at the operating room before surgery, and surgical planning was based on the obtained results. The upgaze limitation of the patients was assessed clinically, and the results were graded from -1 to -4, as follows: mild limitation=-1; moderate limitation=-2; severe limitation=-3; and no elevation above primary position=-4. All the surgeries were done or supervised by the first author.

The Wilcoxon Signed Ranks test was used to compare the preoperative and postoperative values, and the Kruskal Wallis Test was used to assess intergroup differences. P<0.05 was considered statistically significant.


Results

Eighteen patients diagnosed as having MED who had undergone strabismus surgery in our department were enrolled. Thirteen patients were men and 5 were women. The patients were 3 to 53 years old (mean: 15.5±11.8 years). Nine patients had right eye and nine had left eye involvement. Thirteen patients had only vertical deviation, and the remaining 5 patients had vertical and horizontal deviation. Preoperative vertical deviation was between 15 and 60 PD (mean±SD=25.8±10.7 PD). Preoperative horizontal deviation was between 15 and 25 PD exodeviation in 4 patients and 20 PD esodeviation in one patient. Fourteen patients had positive FDT on elevation. Twelve patients had true ptosis and 5 had pseudoptosis. In only one patient ptosis was not present. One patient had true ptosis with the Marcus-Gunn jaw winking phenomena.

The mean postoperative follow-up period was 24.4±21.5 months (range: 1-60 months). Four patients underwent the Knapp procedure, and one patient underwent partial tendon Knapp procedure combined with horizontal muscle recession (table 1). Twelve patients underwent IRR and 2 patients underwent IRR combined with horizontal recession (table 2). The average correction of hypotropia was 18.6 PD from an average preoperative deviation of 25.4 PD (P=0.002). One patient underwent IRR combined with the Knapp procedure at the same session and one patient with prior IRR underwent partial tendon Knapp procedure 4 months later (table 3). Preoperative limitation of upgaze was -2 to -4 (mean: -3.5) and postoperatively it was -1 to -3 (mean: -1.55). This finding indicated a significant decrease in upgaze limitation (P<0.001, tables 1,2 and 3).

The mean postoperative vertical deviation was 6.11±7.9 PD. Compared to preoperative measurements, there was a mean correction of 19.7 PD in the amount of hypotropia in primary gaze position.


Discussion

In this case series, we performed different surgical procedures based on the results of the FDT in patients with MED and evaluated the results based on ocular alignment in primary position.

The pathophysiology of MED is poorly understood. The early description of this condition was thought to be due to a combination of SR and inferior oblique muscle palsy (called double elevator palsy). Studies have shown that only 30% of cases are caused by this problem, and the FDT has demonstrated that 70% is caused by IR restriction.5 Magnetic resonance imaging (MRI) may be a useful adjunct to saccadic velocity assessment in differentiating between primary IR restriction, primary SR paresis, and congenital supranuclear elevation deficiency.6

In our study, MED had similar predilection for the right eye and left eye involvement: 9 patients had right eye and 9 had left eye involvement. A predilection to right side involvement has been reported in MED in the series reported by Ziffer et al.7 and Kucak and co-workers.8 On the other hand, Khawam and Younis9 and also Bagheri et al.10 reported more instances of left eye involvement. Considering the mentioned studies and ours, it seems that the laterality of the condition provides no particular diagnostic information.

The goal of surgery in MED associated with ptosis or pseudoptosis is the management of combined hypotropia and blepharoptosis. For surgical correction of MED, the procedure of choice is determined by the FDT, which ascertains whether the cause is paretic or restrictive. In the presence of SR palsy (paretic form), the procedure employed is a Knapp transposition. The transposition procedure is not recommended in the presence of IR restriction. Therefore, it is important to perform FDT prior to surgery. In our series, the mean amount of correction with the Knapp procedure alone was 20.0 PD. In his original work, Knapp3 reported 15 patients with MED and good results were obtained in 14 out of the 18 patients (93%). Correction of hypotropia in his study ranged from 21 to 55 PD with a mean of 38 PD.

Others have found similar amounts of correction. Barsoum-Homsy11 observed an average correction of 31.7 PD and Watson12 in his series observed a mean correction of 30.5 PD after the Knapp procedure. Cooper and Greenspan13 reported 26.6 PD correction of hypotropia after this procedure. Scott14 performed the Knapp procedure in 19 patients and observed 21.1 PD corrections. Bandyopadhyay et al.15 reported a correction of 29.4 PD of vertical deviation. Kalmesh and Dadeya16 in their series of MED with associated horizontal deviation noted a correction of 20 PD of horizontal and 25 PD of vertical deviation. In our series, 4 patients underwent the Knapp procedure and one patient underwent partial tendon Knapp procedure combined with horizontal muscle recession. We observed a mean correction of 20.0 PD with the Knapp procedure, a finding similar to most of the mentioned studies.3,4,8,10-13

Most patients with MED have IR restriction according to a large number of studies. In our study, 14 patients had positive FDT on elevation; IR restriction was present in 14 out of the 18 patients (77.7 %). This high percentage of IR restriction in patients with MED has been reported by other authors.14,15,17 An IRR should be done in such patients. In our study, 12 patients underwent only IR recession for the management of MED. The average correction was 18.6 PD from an average preoperative deviation of 25.4 PD. There are a few reports on the results of only IR recession for the management of MED. In the study performed by Bandyopadhyay and colleagues,15 the average correction for IR recession was 16 PD from an average preoperative deviation of 25.8 PD. Kocak-Altintas AG et al.18 reported an average correction of 12.27 after IR recession from an average preoperative deviation of 29.17 PD. In another report by Kocak-Altintas AG and co-workers,8 vertical deviation was adequately corrected after IR recession in only one patient; the other 5 patients then underwent transposition surgery 6 months later.8 In a study performed by Bagheri and colleagues,10 one patient with 30 PD hypotropia underwent IR recession alone because of severe restriction on the FDT; the amount of correction was 20 PD.

If hypotropia persists after IRR, in the presence of the residual SR palsy, IRR needs to be followed by the Knapp procedure. In our series, one patient with prior IRR underwent partial tendon Knapp procedure 4 months later. In this patient with 30 PD hypotropia, after IRR, there was 20 PD residual hypotropia. Because of residual SR palsy, partial tendon Knapp procedure was performed 4 months later. After the second procedure, the amount of hypotropia was 8 PD. In another patient because of the high amount of hypotropia (35 PD) and moderately positive FDT, we decided to perform a combined procedure at the same session. The amount of residual hypotropia in this patient was 5 PD. The average correction of hypotropia with the combined procedure in these two patients was 26 PD. In the series of 28 patients with MED reported by Bandyopadhyay et al.15 three patients underwent combined surgeries, with an average correction of 28.6 PD of deviation at the end of two surgeries.

Kocak-Altimtas and colleagues,8 reported a series of 6 patients with MED and positive FDT who underwent IRR, followed by the Knapp procedure. A mean correction of 25.8±5.6 PD was achieved after the combined procedure. Scott14 reported an average correction of 38 PD following a combined procedure. An average correction of 23.75 PD was achieved after simultaneous Knapp and IRR in the series reported by Bagheri et al.10 Burke4 found a statistically significant difference in the magnitude of vertical correction in patients with an IRR performed prior to the Knapp surgery (38 PD) compared with those with no prior IRR (21 PD).

According to our results, the mean residual deviation was 3.8 PD after Knapp, 6.8 PD after IRR, and 6.5 PD after combined procedure. This finding may be attributable to the larger magnitude of preoperative vertical deviation in patients who underwent a combined procedure.

In our series, out of the 18 patients with MED, 12 (66.7%) patients were corrected to within 5 PD of orthophoria, 16 (88.9%) patients within 10 PD of orthophoria, and no one was found with overcorrection. In a series of 28 patients with MED reported by Bandyopadhyay et al.15twenty-four out of 28 patients (86%) had correction of deviation to within 10 PD, a finding similar to our results. Overall preoperative mean vertical deviation was 25.8±10.7 PD and postoperative deviation was 6.11±7.9 PD with an average 19.7 PD correction of hypotropia.

One limitation of our study is that we did not perform sensory neural tests such as the stereopsis test. Although not an objective of our study, this test might have added some information regarding the sensory results of the procedures. This could be assessed in future studies.


Conclusion

Although MED is etiologically multifactorial, satisfactory surgical results can be achieved by judicious selection of the surgical technique based on the results of the FDT. If restriction to upgaze is demonstrated on the FDT, IRR could be done. In cases of secondary IR restriction, hypotropia will persist after IRR because of primary SR palsy. In such cases, a Knapp procedure should be performed in addition to IRR. If the result of the FDT is negative, the patient has either SR paresis or supranuclear MED and the Knapp procedure should be performed.


Conflict of Interest: None declared.


References
1. Raab EL,Abay AA,Bloom JN,Edmond JC,Lueder GT. Pediatric Ophthalmology and Strabismus 2010-2011Year: 2010San Francisco, CAAmerican Academy of Ophthalmology
2. Rosenbam AL. Clinical strabismus managementYear: 19991st edPhiladelphiaWB Saunders
3. Knapp P. The surgical treatment of double elevator paralysis Trans Am Ophthalmol SocYear: 19696730423 PubMed PMID: 4909537; PubMed Central PMCID: PMC1310343. 4909537
4. Burke JP,Ruben JB,Scott WE. Vertical transposition of the horizontal recti (Knapp procedure) for the treatment of double elevator palsy: effectiveness and long-term stability Br J OphthalmolYear: 1992767347 doi: 10.1136/bjo.76.12.734. PubMed PMID: 1486075; PubMed Central PMCID: PMC504393. 1486075
5. Rose LV,Elder JE. Management of congenital elevation deficiency due to congenital third nerve palsy and monocular elevation deficiency Clin Experiment OphthalmolYear: 2007358406 PubMed PMID: 18173413. 18173413
6. Cadera W,Bloom JN,Karlik S,Viirre E. A magnetic resonance imaging study of double elevator palsy Can J OphthalmolYear: 1997322503 PubMed PMID: 9199832. 9199832
7. Ziffer AJ,Rosenbaum AL,Demer JL,Yee RD. Congenital double elevator palsy: vertical saccadic velocity utilizing the scleral search coil technique J Pediatr Ophthalmol StrabismusYear: 1992291429 PubMed PMID: 1432497. 1432497
8. Kocak-Altintas AG,Kocakkkk-Midillioglu I,Dabil H,Duman S. Selective management of double elevator palsy by either inferior rectus recession and/or knapp type transposition surgery Binocul Vis Strabismus QYear: 2000153946 PubMed PMID: 10767681. 10767681
9. Khawam E,Younis M,Shoughary A,Orm SB. Bilateral asymmetric dissociated vertical deviation masquerading as unilateral double elevator palsy. A report of four cases Binocul Vis Strabismus QYear: 20011628590 PubMed PMID: 11720595. 11720595
10. Bagheri A,Sahebghalam R,Abrishami M. Double elevator palsy, subtypes and outcomes of surgery J Ophthalmic Vis ResYear: 2008 310813 PubMed PMID: 23479532; PubMed Central PMCID: PMC3589222. 23479532
11. Barsoum-Homsy M. Congenital double elevator palsy J Pediatr Ophthalmol StrabismusYear: 19832018591 PubMed PMID: 6631650. 6631650
12. Watson AG. A new operation for double elevator paresis Trans Can Ophthalmol SocYear: 196225182
13. Cooper EL,Greenspan G. Operation for double elevator palsy J Paediatr Ophthalmol StrabismusYear: 19718814
14. Scott WE,Jackson OB. Double elevator palsy: The significance of inferior rectus restriction Am Orthopt JYear: 197727510 PubMed PMID: 900620. 900620
15. Bandyopadhyay R,Shetty S,Vijayalakshmi P. Surgical outcome in monocular elevation deficit: a retrospective interventional study Indian J OphthalmolYear: 20085612733 PubMed PMID: 18292623; PubMed Central PMCID: PMC2636075. 18292623
16. Kamlesh,Dadeya S. Surgical management of unilateral elevator deficiency associated with horizontal deviation using a modified Knapp’s procedure Ophthalmic Surg Lasers ImagingYear: 2003342305 PubMed PMID: 12757102. 12757102
17. Metz HS. Double elevator palsy Arch OphthalmolYear: 1979979013 doi: 10.1001/archopht.1979.01020010459013. PubMed PMID: 444125. 444125
18. Kocak-Altintas AG,Kocak-Midillioglu I,Argin A,Duman S. Correction of ptosis or pseudoptosis in congenital Double elevator palsy be either extraocular muscle or lid surgery Ann OphthalmolYear: 2003355761

Tables
[TableWrap ID: T1] Table 1 

Surgical results of the patients undergoing the Knapp procedure


No FDT Limit of upgaze Eye deviation (PD) Amount of correction (PD) Operation F/U Ptosis
Preop Postop Preop Postop
1 - -3 -1 30 RHoT
15 XT
15 XT 30 Knapp 9 True
2 - -3 -2 30 LHoT 1o LHoT 20 Knapp 58 True+MGJW
3 - -3 -1 20 LHoT 5 LHoT 15 Knapp 60 No
4 - -2 -1 15 RHoT
25 XT
Ortho 15 Partial tendon Knapp+RLRR 8 Pseudo

FDT: Forced duction test; F/U: Follow-up; Knapp: Knapp procedure; LHoT: Left hypotropia; Limit: Limitation; MGJW: Marcus Gunn jaw winking; Ortho: Orthophoria; PD: Prism diopter; Pseudo: Pseudoptosis; RHoT: Right hypotropia; RLRR: Right lateral rectus recession; XT: Exotropia


[TableWrap ID: T2] Table 2 

Surgical results of the patients undergoing IRR


No FDT Limit of upgaze Eye deviation (PD) Amount of correction (PD) Operation F/U Ptosis
Preop Postop Preop Postop
5 + -4 -2 30 LHoT 5 LHoT 25 LIRR 8 True
6 + -3 -2 25 LHoT 10 LHoT 15 LIRR 13 True
7 + -4 -2 20 RHoT 10 RHoT 10 RIRR 6 True
8 + -4 -1 30 RHoT 5 RHoT 25 RIRR 40 True
9 + -4 -1 25 LHoT
15 XT
15 XT 25 LIRR 47 Pseudo
10 + -3 -1 15 RHoT Ortho 15 RIRR 20 Pseudo
11 + -4 -2 25 LHoT
20 ET
5 LHoT 20 LIRR+LMR recess 30 Pseudo
12 + -3 -1 15 RHoT Ortho 15 RIRR 10 True
13 + -3 -1 15 RHoT Ortho 15 RIRR 1 True
14 + -4 -3 60 LHoT 30 LHoT 30 LIRR* 3 True
15 + -4 -2 25 LHoT 12 LHoT 13 LIRR 55 True
16 + -4 -1 20 RHoT
20 XT
5 RHoT
10 XT
15 RIRR+RLRR 3 True

ET: Esotropia; FDT: Forced duction test; F/U: Follow-up; LHoT: Left hypotropia; Limit: Limitation; LIRR: Left inferior rectus recession; LLRR: Left lateral rectus recession; Ortho: Orthophoria; PD: Prism diopter; Pseudo: Pseudoptosis; RHoT: Right hypotropia; RIRR: Right inferior rectus recession; RLRR: Right lateral rectus recession; XT: Exotropia; *This patient has been scheduled for subsequent surgery (partial tendon Knapp).


[TableWrap ID: T3] Table 3 

Surgical results of the patients undergoing combined procedure


No FDT Limit of upgaze Eye deviation (PD) Amount of correction (PD) Operation F/U Ptosis
Preop Postop Preop Postop
17 + -4 -3 30 LHoT 8 LHoT 22 LIRR recess+(Knapp)* 52 Pseudo
18 + -4 -1 35 RHoT 5 RHoT 30 RIRR+Knapp 16 True

FDT: Forced duction test; F/U: Follow-up; Knapp: Knapp procedure; LHoT: Left hypotropia; Limit: Llimitation; PD: Prism diopter; Pseudo: Pseudoptosis; RHoT: Right hypotropia; RIRR: Right inferior rectus recession; *This patient underwent partial tendon Knapp procedure 4 months after IR recession with eight PD hypotropia 48 months after the second operation



Article Categories:
  • Original Article

Keywords: Keywords Monocular elevation deficiency, Strabismus, Surgery, Recession.

Previous Document:  Echocardiographic Evaluation of the Effects of a Single Bolus of Erythropoietin on Reducing Ischemia...
Next Document:  Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogen...