Document Detail

Modifying three-dimensional scaffolds from novel nanocomposite materials using dissolvable porogen particles for use in liver tissue engineering.
MedLine Citation:
PMID:  22532408     Owner:  NLM     Status:  Publisher    
Background: Although hepatocytes have a remarkable regenerative power, the rapidity of acute liver failure makes liver transplantation the only definitive treatment. Attempts to incorporate engineered three-dimensional liver tissue in bioartificial liver devices or in implantable tissue constructs, to treat or bridge patients to self-recovery, were met with many challenges, amongst which is to find suitable polymeric matrices. We studied the feasibility of utilising nanocomposite polymers in three-dimensional scaffolds for hepatocytes.Materials and methods: Hepatocytes (HepG2) were seeded on a flat sheet and in three-dimensional scaffolds made of a nanocomposite polymer (Polyhedral Oligomeric Silsesquioxane [POSS]-modified polycaprolactone urea urethane) alone as well as with porogen particles, i.e. glucose, sodium bicarbonate and sodium chloride. The scaffold architecture, cell attachment and morphology were studied with scanning electron microscopy, and we assessed cell viability and functionality.Results: Cell attachment to the scaffolds was demonstrated. The scaffold made with glucose particles as porogen showed a narrower range of pore size with higher porosity and better inter-pore communications and seemed to encourage near normal cell morphology. There was a steady increase of albumin secretion throughout the experiment while the control (monolayer cell culture) showed a steep decrease after day 7. At the end of the experiment, there was no significant difference in viability and functionality between the scaffolds and the control.Conclusion: In this initial study, porogen particles were used to modify the scaffolds produced from the novel polymer. Although there was no significance against the control in functionality and viability, the demonstrable attachment on scanning electron microscopy suggest potential roles for this polymer and in particular for scaffolds made with glucose particles in liver tissue engineering.
Hussamuddin Adwan; Barry Fuller; Clare Seldon; Brian Davidson; Alexander Seifalian
Related Documents :
16405338 - Uptake of phenol on aerosol particles.
23421138 - In-situ heating tem observation of microscopic structural changes of size-controlled me...
17795828 - Asian dust: seasonal transport to the hawaiian islands.
11542128 - Solid hydrocarbon aerosols produced in simulated uranian and neptunian stratospheres.
21167548 - The implications of household greywater treatment and reuse for municipal wastewater fl...
21099048 - Relationship between land use and water quality in a small watershed in south korea.
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-4-24
Journal Detail:
Title:  Journal of biomaterials applications     Volume:  -     ISSN:  1530-8022     ISO Abbreviation:  -     Publication Date:  2012 Apr 
Date Detail:
Created Date:  2012-4-25     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8813912     Medline TA:  J Biomater Appl     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
University Department of Surgery, University College London, Royal Free Hospital, London, UK.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Synthesis and characterization of ZnS: Mn/ZnS core/shell nanoparticles for tumor targeting and imagi...
Next Document:  Technique for internal channelling of hydroentangled nonwoven scaffoldsto enhance cell penetration.