Document Detail

Modeling Tyrosinase and Catecholase Activity Using New m-Xylyl-Based Ligands with Bidentate Alkylamine Terminal Coordination.
MedLine Citation:
PMID:  23194383     Owner:  NLM     Status:  Publisher    
Chemical model systems possessing the reactivity aspects of both tyrosinase and catechol oxidase are presented. Using two m-xylyl-based ligands providing bidentate alkylamine terminal coordination, 1,3-bis[(N,N-dimethylaminoethyl)aminomethyl]benzene (L(H,H)) and 1,3-bis[(N,N,N'-trimethylaminoethyl)aminomethyl]benzene (L(Me,Me)), four new dicopper(I) complexes, [Cu(I)(2)(L(H,H))(MeCN)(4)][ClO(4)](2) (1), [Cu(I)(2)(L(H,H))(PPh(3))(2)(MeCN)(2)][ClO(4)](2) (2), [Cu(I)(2)(L(Me,Me))(MeCN)(2)][ClO(4)](2) (3), and [Cu(I)(2)(L(Me,Me))(PPh(3))(2)][ClO(4)](2) (4), have been synthesized and characterized. Complex 2 has been structurally characterized. Reaction of the dicopper(I) complex 3(2+) with dioxygen at 183 K generates putative bis(μ-oxo)dicopper(III) intermediate (absorption spectroscopy). Oxygenation of 1 and 3 brings about m-xylyl-ring hydroxylation (monooxygenase-like activity), with a noticeable color change from pale-yellow to dark green. The presence of phenoxo- and hydroxo-bridges in the end products [Cu(II)(2)(L(H,H)-O)(OH)(MeCN)(2)][ClO(4)](2) (5) and [Cu(II)(2)(L(Me,Me)-O)(OH)(OClO(3))][ClO(4)]·MeCN(6) has been authenticated by structural characterization. Oxygenation of 3 afforded not only the green complex 6 isolation but also a blue complex [Cu(II)(2)(L(Me,Me))(OH)(2)][ClO(4)](2) (7). Variable temperature magnetic susceptibility measurements on 5 and 6 establish that the Cu(II) centers are strongly antiferromagnetically coupled [singlet-triplet energy gap (J) = -528 cm(-1) (5) and -505 cm(-1) (6)]. The abilities of phenoxo- and hydroxo-bridged dicopper(II) complexes 5 and 6, the previously reported complex [Cu(II)(2)(L(1)-O)(OH)(OClO(3))(2)]·1.5H(2)O (8) (L(1)-OH = 1,3-bis[(2-dimethylaminoethyl)iminomethyl]phenol), and [Cu(II)(2)(L(2)-O)(OH)(OClO(3))()][ClO(4)]() (9) (L(2)-OH = 1,3-[(2-dimethylaminoethyl)iminomethyl][(N,N,N'-trimethyl)aminoethyl]-4-methylphenol) have been examined to catalyze the oxidation of catechol to quinone (catecholase activity of tyrosinase and catechol oxidase-like activity) by employing the model substrate 3,5-di-tert-butylcatechol. Saturation kinetic studies have been performed on these systems to arrive at the following reactivity order [k(cat)/K(M) (catalytic efficiency) × 10(-3) (M(-1) h(-1))]: 470 (6) > 367 (5) > 128 (9) > 90 (8).
Sukanta Mandal; Jhumpa Mukherjee; Francesc Lloret; Rabindranath Mukherjee
Related Documents :
15317053 - Unprecedented polymerization of epsilon-caprolactone initiated by a single-site lanthan...
23878933 - Synthesis, characterization, crystal structure, and biological studies of two new cd (i...
17690783 - Vibrational dynamics of carboxylic acid dimers in gas and dilute solution.
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-11-29
Journal Detail:
Title:  Inorganic chemistry     Volume:  -     ISSN:  1520-510X     ISO Abbreviation:  Inorg Chem     Publication Date:  2012 Nov 
Date Detail:
Created Date:  2012-11-30     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0366543     Medline TA:  Inorg Chem     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Medical hypothesis: can gonadotropins influence thyroid volume in women with PCOS?
Next Document:  Pigments versus structure: examining the mechanism of age-dependent change in a carotenoid-based col...