Document Detail

MnSOD drives neuroendocrine differentiation, androgen independence, and cell survival in prostate cancer cells.
MedLine Citation:
PMID:  21056653     Owner:  NLM     Status:  In-Data-Review    
An increase in neuroendocrine (NE) cell number has been associated with progression of prostate tumor, one of the most frequent cancers among Western males. We previously reported that mitochondrial manganese superoxide dismutase (MnSOD) increases during the NE differentiation process. The goal of this study was to find whether MnSOD up-regulation is enough to induce NE differentiation. Several human prostate cancer LNCaP cell clones stably overexpressing MnSOD were characterized and two were selected (MnSOD-S4 and MnSOD-S12). MnSOD overexpression induces NE morphological features as well as coexpression of the NE marker synaptophysin. Both MnSOD clones exhibit lower superoxide levels and higher H(2)O(2) levels. MnSOD-overexpressing cells show higher proliferation rates in complete medium, but in steroid-free medium MnSOD-S12 cells are still capable of proliferation. MnSOD up-regulation decreases androgen receptor and prevents its nuclear translocation. MnSOD also induces up-regulation of Bcl-2 and prevents docetaxel-, etoposide-, or TNF-induced cell death. Finally, MnSOD-overexpressing cells enhance growth of androgen-independent PC-3 cells but reduce growth of androgen-dependent cells. These results indicate that redox modulation caused by MnSOD overexpression explains most NE-like features, including morphological changes, NE marker expression, androgen independence, inhibition of apoptosis, and enhancement of cell growth. Many of these events can be associated with the androgen dependent-independent transition during prostate cancer progression.
Isabel Quiros-Gonzalez; Rosa M Sainz; David Hevia; Juan C Mayo
Related Documents :
4029083 - Selection and characterization of a breast cancer cell line resistant to the antiestrog...
17261773 - Metabolic profiles of androgens in malignant human liver cell lines.
17825043 - Pax6 transcription factor is required for the interkinetic nuclear movement of neuroepi...
Publication Detail:
Type:  Journal Article     Date:  2010-11-05
Journal Detail:
Title:  Free radical biology & medicine     Volume:  50     ISSN:  1873-4596     ISO Abbreviation:  Free Radic. Biol. Med.     Publication Date:  2011 Feb 
Date Detail:
Created Date:  2011-01-31     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8709159     Medline TA:  Free Radic Biol Med     Country:  United States    
Other Details:
Languages:  eng     Pagination:  525-36     Citation Subset:  IM    
Copyright Information:
Copyright © 2010 Elsevier Inc. All rights reserved.
Instituto Universitario de Oncología del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Age-related increase in PKC gamma expression in the cochlear nucleus of hearing impaired C57BL/6J an...
Next Document:  The catalytic class I(A) PI3K isoforms play divergent roles in breast cancer cell migration.