Document Detail

Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation.
MedLine Citation:
PMID:  19932104     Owner:  NLM     Status:  MEDLINE    
The mammalian degradation of lysine is believed to proceed via two distinct routes, the saccharopine and the pipecolic acid routes, that ultimately converge at the level of alpha-aminoadipic semialdehyde (alpha-AASA). alpha-AASA dehydrogenase-deficient fibroblasts were grown in cell culture medium supplemented with either L-[alpha-(15)N]lysine or L-[epsilon-(15)N]lysine to explore the exact route of lysine degradation. L-[alpha-(15)N]lysine was catabolised into [(15)N]saccharopine, [(15)N]alpha-AASA, [(15)N]Delta(1)-piperideine-6-carboxylate, and surprisingly in [(15)N]pipecolic acid, whereas L-[epsilon-(15)N]lysine resulted only in the formation of [(15)N]saccharopine. These results imply that lysine is exclusively degraded in fibroblasts via the saccharopine branch, and pipecolic acid originates from an alternative precursor. We hypothesize that pipecolic acid derives from Delta(1)-piperideine-6-carboxylate by the action of Delta(1)-pyrroline-5-carboxylic acid reductase, an enzyme involved in proline metabolism.
Eduard A Struys; Cornelis Jakobs
Related Documents :
1858984 - Isotopic determination of organic keto acid pentafluorobenzyl esters in biological flui...
25198844 - Effect of pretreatments on microbial growth and sensory properties of dry-salted olives.
19834704 - Bioproduction of chiral mandelate by enantioselective deacylation of alpha-acetoxypheny...
19207464 - Methylation of alpha-amino acids and derivatives using trimethylsilyldiazomethane.
21463934 - Production of medium-chain-length polyhydroxyalkanoates by activated sludge enriched un...
12722154 - Secoiridoid glucosides with free radical scavenging activity from the leaves of syringa...
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  FEBS letters     Volume:  584     ISSN:  1873-3468     ISO Abbreviation:  FEBS Lett.     Publication Date:  2010 Jan 
Date Detail:
Created Date:  2009-12-16     Completed Date:  2010-01-21     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0155157     Medline TA:  FEBS Lett     Country:  Netherlands    
Other Details:
Languages:  eng     Pagination:  181-6     Citation Subset:  IM    
Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Aldehyde Dehydrogenase / deficiency*
Cell Line
Fibroblasts / enzymology*
Lysine / metabolism*
Neoplasm Proteins / deficiency*
Picolinic Acids / metabolism
Pipecolic Acids / metabolism*
Pyrroles / metabolism
Reg. No./Substance:
0/Neoplasm Proteins; 0/Picolinic Acids; 0/Pipecolic Acids; 0/Pyrroles; 2906-39-0/delta-1-pyrroline-5-carboxylate; 3038-89-9/delta-1-piperidine-6-carboxylic acid; 535-75-1/pipecolic acid; 56-87-1/Lysine; EC protein, human; EC Dehydrogenase

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  The T box mechanism: tRNA as a regulatory molecule.
Next Document:  Salmonella enterica serovar Typhimurium lipopolysaccharide deacylation enhances its intracellular gr...