Document Detail

Mesenchymal stem cells contribute to vascular growth in skeletal muscle in response to eccentric exercise.
MedLine Citation:
PMID:  23280781     Owner:  NLM     Status:  In-Data-Review    
The α(7)β(1)-integrin is an adhesion molecule highly expressed in skeletal muscle that can enhance regeneration in response to eccentric exercise. We have demonstrated that mesenchymal stem cells (MSCs), predominantly pericytes, accumulate in muscle (mMSCs) overexpressing the α(7B)-integrin (MCK:α(7B); α(7)Tg) and contribute to new fiber formation following exercise. Since vascularization is a common event that supports tissue remodeling, we hypothesized that the α(7)-integrin and/or mMSCs may stimulate vessel growth following eccentric exercise. Wild-type (WT) and α(7)Tg mice were subjected to single or multiple (3 times/wk, 4 wk) bouts of downhill running exercise. Additionally, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) -labeled mMSCs were intramuscularly injected into WT recipients. A subset of recipient mice were run downhill before injection to recapitulate the exercised microenvironment. While total number of CD31(+) vessels declined in both WT and α(7)Tg muscle following a single bout of exercise, the number of larger CD31(+) vessels with a visible lumen was preferentially increased in α(7)Tg mice following eccentric exercise training (P < 0.05). mMSC transplantation similarly increased vessel diameter and the total number of neuron-glial antigen-2 (NG2(+)) arterioles postexercise. Secretion of arteriogenic factors from mMSCs in response to mechanical strain, including epidermal growth factor and granulocyte macrophage-colony stimulating factor, may account for vessel remodeling. In conclusion, this study demonstrates that the α(7)-integrin and mMSCs contribute to increased vessel diameter size and arteriolar density in muscle in response to eccentric exercise. The information in this study has implications for the therapeutic treatment of injured muscle and disorders that result in vessel occlusion, including peripheral artery disease.
Heather D Huntsman; Nicole Zachwieja; Kai Zou; Pauline Ripchik; M Carmen Valero; Michael De Lisio; Marni D Boppart
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  American journal of physiology. Heart and circulatory physiology     Volume:  304     ISSN:  1522-1539     ISO Abbreviation:  Am. J. Physiol. Heart Circ. Physiol.     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-01-02     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100901228     Medline TA:  Am J Physiol Heart Circ Physiol     Country:  United States    
Other Details:
Languages:  eng     Pagination:  H72-81     Citation Subset:  IM    
Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Memory and other properties of multiple test procedures generated by entangled?graphs.
Next Document:  IR Spectrum and Structure of a Protonated Disilane: Probing the Si?H?Si Proton Bridge.