Document Detail


Mesenchymal stem cells augment neurogenesis in the subventricular zone and enhance differentiation of neural precursor cells into dopaminergic neurons in the substantia nigra of a Parkinsonian model.
MedLine Citation:
PMID:  22546197     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Growing evidence has demonstrated that neurogenesis in the subventricular zone (SVZ) is significantly decreased in Parkinson's disease (PD). Modulation of endogenous neurogenesis would have a significant impact on future therapeutic strategies for neurodegenerative diseases. In the present study, we investigated the augmentative effects of human mesenchymal stem cells (hMSCs) on neurogenesis in a PD model. Neurogenesis was assessed in vitro with 1-methyl-4- phenylpyridinium (MPP+) treatment using neural precursor cells (NPCs) isolated from the SVZ and in vivo with a BrdU-injected animal model of PD using 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). Immunochemical analyses were used to measure neurogenic activity. The number of BrdU-ir cells in the SVZ and the substantia nigra (SN) was significantly increased in the hMSC-treated PD group compared with the MPTP-only-treated group. Double-stained cells for BrdU and tyrosine hydroxylase were notably observed in the SN of hMSC-treated PD animals, and they did not colocalize with the nuclear matrix; however, double-stained cells were not detected in the SN of the MPTP-induced PD animal model. Furthermore, hMSC administration increased the expression of the epidermal growth factor receptor (EGFR) in the SVZ of PD animals, and coculture of hMSCs significantly increased the release of EGF in the medium of MPP+-treated NPCs. The present study demonstrated that hMSC administration significantly augmented neurogenesis in both the SVZ and SN of PD animal models, which led to increased differentiation of NPCs into dopaminergic neurons in the SN. Additionally, hMSC-induced modulation of EGF seems to be an underlying contributor to the enhancement of neurogenesis by hMSCs. The modulation of endogenous adult neurogenesis to repair the damaged PD brain using hMSCs would have a significant impact on future strategies for PD treatment.
Authors:
Hyun-Jung Park; Jin Young Shin; Bo Ra Lee; Hyun Ok Kim; Phil Hyu Lee
Related Documents :
19250337 - Neural progenitor cell death is induced by extracellular atp via ligation of p2x7 recep...
11726647 - Prolonged nuclear retention of activated extracellular signal-regulated protein kinase ...
16200197 - Mitochondria: pharmacological manipulation of cell death.
9878097 - Oestradiol regulated programmed cell death in rat vagina: terminal differentiation or a...
3079547 - Rat pulmonary artery wall injury by chronic intermittent infusions of escherichia coli ...
18083887 - The mucin degrader akkermansia muciniphila is an abundant resident of the human intesti...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-4-24
Journal Detail:
Title:  Cell transplantation     Volume:  -     ISSN:  1555-3892     ISO Abbreviation:  -     Publication Date:  2012 Apr 
Date Detail:
Created Date:  2012-5-1     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9208854     Medline TA:  Cell Transplant     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Spin-polarized scanning tunneling microscopy: breakthroughs and highlights.
Next Document:  Simultaneous determination of pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyl...