Document Detail


Membrane hydrophone measurement and numerical simulation of HIFU fields up to developed shock regimes.
MedLine Citation:
PMID:  23357903     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
For the characterization of high-intensity focused ultrasound (HIFU) fields, hydrophone measurements should be performed in water in the whole range of the radiated power; however, cavitation occurs at high output, leading to the destruction of the hydrophone. To avoid this problem, a new hydrophone with additional protective layers covering the electrodes was developed and tested in the experiments. A single-element 1-MHz focusing ultrasound source was used for detailed measurements of the acoustic field in the axial and lateral planes. Measurements were performed with a new membrane hydrophone up to the focal peak compressional and rarefactional pressures of 55.6 and of 12.8 MPa, respectively, when the shock front had already formed in the waveform. Numerical modeling for the beams of periodic waves with an initially uniform amplitude distribution was performed, based on the Khokhlov-Zabolotskaya-Kuznetsov equation. Numerical solutions were compared with the experimental data and found to be in good agreement (within 10%). The influences of the limited bandwidth and the spatial averaging effect of the hydrophone on the accurate measurements of the acoustic field parameters were also investigated.
Authors:
Olga Bessonova; Volker Wilkens
Related Documents :
18471023 - Quantum dot microdrop laser.
20366703 - Time-dependent density functional theory for open quantum systems with unitary propagat...
24483573 - Collisional and collisionless expansion of yukawa balls.
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  IEEE transactions on ultrasonics, ferroelectrics, and frequency control     Volume:  60     ISSN:  1525-8955     ISO Abbreviation:  IEEE Trans Ultrason Ferroelectr Freq Control     Publication Date:  2013 Feb 
Date Detail:
Created Date:  2013-01-29     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9882735     Medline TA:  IEEE Trans Ultrason Ferroelectr Freq Control     Country:  United States    
Other Details:
Languages:  eng     Pagination:  290-300     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Optical fluorescent imaging to monitor temporal effects of microbubble-mediated ultrasound therapy.
Next Document:  Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro.