Document Detail

Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis.
Jump to Full Text
MedLine Citation:
PMID:  23047948     Owner:  NLM     Status:  MEDLINE    
Red1, Hop1 and Mek1 are three yeast meiosis-specific chromosomal proteins that uphold the interhomolog (IH) bias of meiotic recombination. Mek1 is also an effector protein kinase in a checkpoint that responds to aberrant DNA and/or axis structure. The activation of Mek1 requires Red1-dependent Hop1-Thr(T)318 phosphorylation, which is mediated by Mec1 and Tel1, the yeast homologs of the mammalian DNA damage sensor kinases ATR and ATM. As the ectopic expression of Mek1-glutathione S-transferase (GST) was shown to promote IH recombination in the absence of Mec1/Tel1-dependent checkpoint function, it was proposed that Mek1 might play dual roles during meiosis by directly phosphorylating targets that are involved in the recombination checkpoint. Here, we report that Mek1 has a positive feedback activity in the stabilization of Mec1/Tel1-mediated Hop1-T318 phosphorylation against the dephosphorylation mediated by protein phosphatase 4. Our results also reveal that GST-Mek1 or Mek1-GST further increases Hop1-T318 phosphorylation. This positive feedback function of Mek1 is independent of Mek1's kinase activity, but dependent on Mek1's forkhead-associated (FHA) domain and its arginine 51 residue. Arginine 51 directly mediates the interaction of Mek1-FHA and phosphorylated Hop1-T318. We suggest that the Hop1-Mek1 interaction is similar to the Rad53-Dun1 signaling pathway, which is mediated through the interaction of phosphorylated Rad53 and Dun1-FHA.
Chi-Ning Chuang; Yun-Hsin Cheng; Ting-Fang Wang
Related Documents :
23849858 - Hydrogen peroxide signaling mediator in the activation of p38 mapk in vascular endothel...
25025778 - Characterization of a putative spindle assembly checkpoint kinase mps1, suggests its in...
1175858 - Induction of rat pituitary thymidine kinase: another physiological response to oestradi...
24081328 - Akt switches topbp1 function from checkpoint activation to transcriptional regulation t...
18955458 - Primary and secondary kinase genotypes correlate with the biological and clinical activ...
24276788 - The role of glycogen synthase kinase 3-β in immunity and cell cycle: implications in e...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2012-10-09
Journal Detail:
Title:  Nucleic acids research     Volume:  40     ISSN:  1362-4962     ISO Abbreviation:  Nucleic Acids Res.     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2012-12-17     Completed Date:  2013-02-22     Revised Date:  2013-07-11    
Medline Journal Info:
Nlm Unique ID:  0411011     Medline TA:  Nucleic Acids Res     Country:  England    
Other Details:
Languages:  eng     Pagination:  11416-27     Citation Subset:  IM    
Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Antibodies, Phospho-Specific
Arginine / physiology
Cell Cycle Proteins / genetics
DNA Breaks, Double-Stranded
DNA Helicases / chemistry,  immunology,  metabolism
DNA Repair Enzymes / chemistry,  immunology,  metabolism
DNA-Binding Proteins / chemistry,  genetics,  immunology,  metabolism*
Gene Deletion
Meiosis / genetics*
Nuclear Proteins / chemistry,  genetics,  immunology,  metabolism
Protein-Serine-Threonine Kinases / chemistry,  metabolism*
Recombination, Genetic*
Saccharomyces cerevisiae / enzymology,  genetics,  metabolism
Saccharomyces cerevisiae Proteins / chemistry,  genetics,  immunology,  metabolism*
Threonine / metabolism
Reg. No./Substance:
0/Antibodies, Phospho-Specific; 0/Cell Cycle Proteins; 0/DNA-Binding Proteins; 0/HOP1 protein, S cerevisiae; 0/Nuclear Proteins; 0/Pch2 protein, S cerevisiae; 0/RAD17 protein, S cerevisiae; 0/Saccharomyces cerevisiae Proteins; 0/Zip1 protein, S cerevisiae; 72-19-5/Threonine; 74-79-3/Arginine; EC Kinases; EC 3.6.1.-/DNA Helicases; EC 3.6.1.-/RAD54 protein, S cerevisiae; EC 6.5.1.-/DNA Repair Enzymes

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Nucleic Acids Res
Journal ID (iso-abbrev): Nucleic Acids Res
Journal ID (publisher-id): nar
Journal ID (hwp): nar
ISSN: 0305-1048
ISSN: 1362-4962
Publisher: Oxford University Press
Article Information
Download PDF
© The Author(s) 2012. Published by Oxford University Press.
Received Day: 11 Month: 4 Year: 2012
Revision Received Day: 8 Month: 9 Year: 2012
Accepted Day: 11 Month: 9 Year: 2012
collection publication date: Month: 12 Year: 2012
Print publication date: Month: 12 Year: 2012
Electronic publication date: Day: 9 Month: 10 Year: 2012
pmc-release publication date: Day: 9 Month: 10 Year: 2012
Volume: 40 Issue: 22
First Page: 11416 Last Page: 11427
PubMed Id: 23047948
ID: 3526284
DOI: 10.1093/nar/gks920
Publisher Id: gks920

Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis
Chi-Ning Chuang12
Yun-Hsin Cheng12
Ting-Fang Wang12*
1Institute of Molecular Biology, Academia Sinica, Taipei 115 and 2Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
Correspondence: *To whom correspondence should be addressed. Tel: +886 2 27899188; Fax: +886 2 27826508; Email:


In most sexually reproducing organisms, programmed DNA double-strand breaks (DSBs) are necessary for generating crossovers (COs) between homologous chromosomes to ensure accurate segregation during the first meiotic division (1). In contrast, the recombination-mediated repair of DSBs uses the sister templates during mitosis (2). Thus, a unique aspect of meiotic recombination is the choice between three recombination templates (two homologs and one sister chromatid) to repair a DSB. In Saccharomyces cerevisiae, the formation of DSBs requires the evolutionarily conserved transesterase Spo11 and several accessory factors (1). These DSBs are resected by the Mre11–Rad50–Xrs2 (MRX) nuclease complex, Sae2 and Exo1 nuclease ensemble to generate 3′-single-strand DNA (ssDNA) tails that invade the intact DNA duplexes used in DNA repair (3–5). Overhangs of 3′-ssDNA are initially bound by replication protein A (RPA) and then replaced by RecA-like strand exchange proteins, Rad51 and Dmc1 (6). The resulting nucleoprotein filaments mediate the search for homology and catalyze DNA strand exchange to form joint molecule intermediates. Dmc1 and Rad51 have overlapping but also non-redundant functions in promoting recombination during meiosis (7). Eventually, the DSBs are repaired, resulting in COs, with the exchange of chromosome arms or non-COs (NCOs). Three meiosis-specific proteins, Mek1, Hop1 and Red1, act positively to promote interhomolog (IH) recombination (8–10) and negatively to slow the rate of intersister recombination (11). The faster rate of intersister repair is mediated by sister chromatin cohesion (Rec8), while Red1/Hop1/Mek1 counteracts this effect, thereby ensuring IH bias (12).

Mek1 is a protein kinase, whereas Red1 and Hop1 are structural components of the axial elements of the synaptonemal complex (SC). The SC is a zipper-like proteinaceous structure that mediates chromosome synapsis during the late prophase stage known as pachytene. The SC consists of a central region and two dense lateral elements. The lateral element constitutes the rod-like homolog axis, which is called an axial element prior to synapsis (13–17). The central region of the SC is made up of Zip1 (18). In response to DSBs, Red1 associates with SUMO polymeric chains (19) and the 9-1-1 complex (Ddc1–Mec3–Rad17) (20) to activate Mec1 and Tel1, the yeast homologs of the mammalian DNA damage sensor kinases ATM and ATR. These two kinases preferentially phosphorylate their substrates at serine (S) and threonine (T) residues that precede glutamine residues, so-called SQ/TQ motifs. Many known targets of the ATM/ATR family proteins contain the SQ/TQ cluster domains (SCDs). For example, Mec1 and Tel1 phosphorylate Hop1 at multiple SQ/TQ motifs within its N-terminal SCD (amino acid residues 298–319), in which the phosphorylation of T318 affects Hop1 activities most profoundly (21). Hop1-T318 phosphorylation is required for the activation of Mek1 and its recruitment to chromosomes (21), consistent with previous reports that Mek1 activation requires both Red1 and Hop1 (8,9). Mec1 and Tel1 also phosphorylate SQ and TQ sites in several other phosphoproteins during meiosis, including Sae2, histone H2A at S129 (i.e. γ-H2A), RPA, Rad53 and Zip1 (22–26). The Mec1-dependent phosphorylation of the Zip1 protein at S75 dynamically destabilizes homology-independent centromere pairing in response to DSBs (26). Protein phosphatase 4 (PP4) is responsible for the dephosphorylation of several Mec1/Tel1-dependent phosphoproteins during meiosis, as persistent hyperphosphorylation occurs in the absence of Pph3 and Psy2 (26). Pph3 and Psy2 are the catalytic subunit and the coactivator of PP4, respectively (27,28). Finally, the presence of aberrant DNA structures or incomplete synapsis activates a Mec1/Tel1-dependent recombination checkpoint that leads to the inhibition of Ndt80, a transcription factor required for the exit from pachytene (29,30).

Mek1 phosphorylates multiple targets in meiosis, including Rad54 at T132 (31), and histone H3 at T11 (32). Rad54 is a dsDNA-dependent ATPase that is required for Rad51 recombinase activity (33). The mek1Δ mutant generates very few viable spores. However, a rad54T132A allele that substitutes T132 with alanine (A) displayed no apparent defect in spore viability. Phosphorylated Rad54 might act synergistically with the meiosis-specific protein Hed1 to suppress the recombinase activity of Rad51 (31). Alternatively, Rad54 phosphorylation may have little effect on preventing intersister recombination or another protein Tid1/Rdh54 can substitute Rad54 and use Dmc1 for IH recombination (34,35). The role of H3-T11 phosphorylation is still unclear. It was also suggested that Mek1 might directly phosphorylate targets that are involved in establishing IH bias (10). Mek1 activation can be artificially maintained through glutathione S-transferase (GST)-mediated dimerization. Mek1-GST and GST-Mek1 can rescue the spore viability of mek1Δ but not hop1Δ or red1Δ (8,36). Intriguingly, the ectopic expression of Mek1-GST in wild-type cells results in increased IH bias, but the extraneous IH events are preferentially repaired as NCOs rather than COs. In contrast, Mek1-GST promotes both IH bias and CO formation in the absence of RAD17- and PCH2-dependent checkpoint functions (36). Rad17 is a component of the 9-1-1 checkpoint complex (20). Pch2 is a widely conserved, putative ATPase associated with cellular activities (AAA)-type ATPase with important roles in pachytene checkpoint, normal SC assembly, and the distribution of DSBs and CO events (37–48). Recently, Pch2 was shown to physically and functionally interact with Xrs2 (49) and Tel1 (Wang,T.-F., unpublished data). Xrs2 is a member of the MRX complex, which acts at the sites of unprocessed DSBs. It has been suggested that the Pch2–Xrs2 interaction might enable Pch2 to remodel chromosome structures adjacent to DSB sites to promote access by Tel1 and Mec1 kinases for Hop1 phosphorylation (49). As Mek1-GST is involved in promoting IH bias in the absence of RAD17- and PCH2-dependent checkpoint functions, Mek1 was proposed to phosphorylate proteins that are directly involved in the recombination checkpoint (36). In this report, we further explored the roles of Mek1, GST-Mek1 and Mek1-GST in regulating the recombination checkpoint. Our data support an alternative model in which Mek1 provides positive feedback in the stabilization of Mec1/Tel1-mediated Hop1-T318 phosphorylation.


Guinea pig antisera against phosphorylated Zip1-S75 were raised using a synthetic phosphopeptide (C65KKLITSMSLS[P]QRNHGYS82) as an antigen. Rabbit antisera against phosphorylated Rad54-T132 and phosphorylated Hop1-T318 were raised using the synthetic phosphopeptides (T126LRRSFT[P]VPIKGYV139 and S311QASIQPT[P]QFVSNN324) as antigens, respectively. The antisera were pre-cleared by affinity chromatography using the corresponding non-phosphorylated peptides coupled to agarose beads. Phosphopeptide synthesis and animal immunization were conducted by LTK BioLaboratories, Taiwan. Anti-phospho-Histone 2A (H2A)-S129 antiserum (50) was from Millipore, Billerica, MA, USA. Anti-GST antibody was from Genescript, NJ, USA. Anti-YFP (or anti-GFP) antibody was from Clontech, CA, USA.

Yeast strains, sporulation and western blot analysis

All meiotic experiments were performed using diploid cells from the SK1 strain background. Western blot analyses were performed as previously described (19,51). Spore viability was determined by tetrad dissection.

Inhibition of the analog-sensitive GST-Mek1-as mutant

4-Amino-1-tert-butyl-3(1′-naphthylmethyl)pyrazolo[3,4-d]pyrimidine (1-NM-PP1) (52) was provided by Cellular Genomics (New Haven, CT, USA). Five micromolars of 1-NM-PP1 was added into sporulating cell culture to inhibit GST-Mek1-as kinase activity.

Quantitative western blot analyses

Yeast total protein extracts were prepared by trichloroacetic acid precipitation as previously described (51). Western blots were developed using the ChemiLucent ECL Detection System (Millipore) and imaged by exposure to X-ray film. The relative intensities of protein bands of interest from X-ray films were obtained with a Biospectrum 600 imaging system (UVP, Upland, CA, USA) containing an OptiCam 600 camera (Canon, Japan). For quantification, protein bands were plotted on a bar graph using VisionWorksLS Image Acquisition and Analysis Software (UVP). The intensities of phosphorylated Hop1-T318 proteins (72–95 kDa) and of the loading control (Hsp104) were acquired from X-ray films by subtracting an equally sized background, respectively. For normalization, intensity of phosphorylated Hop1-T318 protein was divided by that of the loading control at the indicated time point. To reduce the quantitative variations resulting from different X-ray film exposure time, the protein samples with the strongest phosphorylated Hop1-T318 signals were collected from different cultures and simultaneously compared in a separate western blot.

Validation of antisera against phosphorylated Hop1-T318, Zip1-S75 and Rad54-T132 proteins

Phosphorylated peptides were synthesized and used to generate antisera specific to phosphorylated Hop1-T318, Zip1-S75 and Rad54-T132 proteins (see ‘Materials and Methods’ section). Synchronous meiosis was induced in wild-type and mutant strains. Following transfer to sporulation medium, meiotic cells were harvested at the indicated time points, and total cell lysates were prepared (51). Western blot analyses were performed to validate these antisera. As shown in Figure 1A (middle panel), at least two bands (∼85 kDa) were detected by anti-phospho-Hop1-T318 antibodies in the wild-type lysate, but not in the lysates from strains carrying mutant alleles hop1Δ or hop1T318A dmc1Δ. The hop1T318A variant encodes a mutant protein in which the T318 residue of Hop1 has been mutated to alanine (A); this strain produces no viable spores (Table 1) (21). The dmc1Δ mutation results in the accumulation of resected DSBs (or ssDNAs) (53) and phosphorylated Hop1 (21). T318 is not the sole phosphorylation site in Hop1 (21), as shifted bands are still detected by anti-Hop1 antisera in wild type and hop1T318A dmc1Δ (Figure 1A). Next, we showed that the extent of Hop1-T318 phosphorylation is comparable between wild type and tel1Δ but reduced in mec1-kd (=kinase dead) sml1Δ (Figure 1B; sml1Δ suppresses the lethality conferred by mec1Δ or mec1-kd mutations). Phosphorylated Hop1-T318 is not detected with anti-phospho-Hop1-T318 antisera in the mec1-kd sml1Δ tel1Δ triple mutant. Furthermore, shifted Hop1 band is hardly recognized by anti-Hop1 antisera in the mec1-kd sml1Δ tel1Δ triple mutant (Figure 1B).

The dephosphorylation of Hop1-T318 is mediated by PP4 in meiosis, and the persistent hyperphosphorylation of Hop1-T318 was observed in pph3Δ (Figure 1C). Pph3 is the catalytic subunit of PP4. The pph3Δ mutant also accumulated higher levels of phosphorylated Zip1; shifted bands were detected with anti-Zip1 antibody (Figure 1C). The anti-phospho-Zip1-S75 antibodies were able to detect phosphorylated Zip1-S75 in the wild type but not in the zip1Δ or the mec1-kd sml1Δ tel1Δ triple mutant (Figure 1D). These results confirmed that Mec1 and Tel1 mediate Hop1 and Zip1 phosphorylation (21,26) and that PP4 is responsible for Hop1 and Zip1 dephosphorylation (26). Finally, the anti-phospho-Rad54-T132 antibody specifically recognizes phosphorylated Rad54-T132, as suggested by the absolute dependence of a positive signal in western blotting on the phosphorylation of T132. This band is absent in a strain carrying the rad54T132A mutation despite normal entry into meiosis, as indicated by timely appearance of SC protein Zip1 (Figure 1E).

Mek1 promotes not only Rad54-T132 phosphorylation but also Hop1-T318 phosphorylation

Mek1 mediates Rad54-T132 phosphorylation during meiosis (31). Phosphorylated Rad54-T132 was detected with anti-phospho-Rad54-T132 antisera in mek1Δ diploids transformed with either a PMEK1-MEK1 or PMEK1-GST-mek1-as expression vector, in which the expression of Mek1 or GST-Mek1-as, respectively, is under the control of the MEK1 gene promoter (PMEK1). GST-mek1-as, an analog-sensitive mutant, has the advantage that it can be specifically inhibited by the addition of the purine analog 1-NM-PP1, whereas wild-type GST-Mek1 is unaffected by inhibitor (9,31). Quantitative western blot analyses (see ‘Materials and Methods’ section) showed that Rad54-T132 phosphorylation was negligible in a mek1Δ strain carrying a mock 2 µ vector. Higher steady-state levels of phosphorylated Rad54-T132 were induced by GST-Mek1-as (in the absence of 1-NM-PP1) than by Mek1 in mek1Δ (Figure 2A and B). Thus, in accordance with the semi-dominance of GST-Mek1 and Mek1-GST, semi-dominance can also be assumed for GST-mek1-as (8,36).

Mek1 is a downstream effector of phosphorylated Hop1-T318 (21). Surprisingly, we observed that Mek1 and GST-Mek1-as enhanced Hop1-T318 phosphorylation but not Zip1-S75 phosphorylation or H2A-S129 phosphorylation in mek1Δ. Overexpression of GST-Mek1-as in mek1Δ induced persistent and higher steady-state levels of Hop1-T318 phosphorylation, whereas overexpression of Mek1 in mek1Δ induced a transient increase of Hop1-T318 phosphorylation (Figure 2A and B). In contrast, the steady-state levels of Zip1-S75 phosphorylation and H2A-S129 phosphorylation were slightly lower in PMEK1-GST-mek1-as mek1Δ than in PMEK1-MEK1 mek1Δ or in mek1Δ (Figure 2A and B). As all these three phosphoproteins are mediated by the Mec1 and Tel1 kinases, it is unlikely that the positive feedback function of GST-Mek1-as or Mek1 on Hop1-T318 phosphorylation is due to increased Mec1 and Tel1 kinase activities.

Since we were unable to generate or acquire antisera that could specifically recognize both phosphorylated and non-phosphorylated Rad54 in yeast total cell lysates, we next constructed yeast strains expressing yellow fluorescent protein (YFP) tagged Rad54 proteins (i.e. Rad54-YFP) (54) to determine whether mek1Δ mutation would affect steady-state levels of Rad54 as detected by an anti-YFP antibody (Figure 2E). Similar to the wild-type strain, the RAD54-YFP strain generates 89% viable spores. The mek1Δ RAD54-YFP mutant produces 4% viable spores (Table 1). The results of quantitative western blot analyses confirm that these two strains display similar levels of Rad54-YFP proteins during meiosis (Figure 2E and F).

GST-mediated Mek1 dimerization resulted in enhanced Hop1-T318 phosphorylation

GST-Mek1-as is better than Mek1 in enhancing Hop1-T318 and Rad54-T132 phosphorylation. GST artificially enhances dimerization of wild-type Mek1, although the role of dimerization in promoting Hop1-T318 phosphorylation is not yet clear. This possibility that GST-enhanced dimerization was responsible for the increased phosphorylation of Hop1-T318 and Rad54-T132 was addressed by constructing a non-dimerizing gst(nd)-mek1-as allele (8). The gst(nd)-mek1-as strain, similar to GST-mek1-as (Table 1), mek1-GST and mek1-gst(nd) (36), produces a large number of viable spores. Quantitative western blot analyses revealed that GST-Mek1-as appeared ∼1 h earlier than GST(nd)-Mek1-as. Moreover, the expression levels of GST-Mek1-as were greater than those of GST(nd)-Mek1-as. We also observed that the GST-mek1-as strain resulted in higher levels of Hop1-T318 phosphorylation and Rad54-T132 phosphorylation compared with the gst(nd)-mek1-as strain (Figure 2C and D). As the relative ratios of phosphorylated Rad54-T132 or phosphorylated Hop1-T318 versus GST-Mek1-as were similar to those of phosphorylated Rad54-T132 or phosphorylated Hop1-T318 versus GST(nd)-Mek1-as, we inferred that GST-mediated dimerization was unlikely directly responsible for the enhancement of Hop1-T318 and Rad54-T132 phosphorylation. Rather, GST-Mek1-as is apparently more stable than GST(nd)-Mek1-as.

The protein kinase activity of Mek1 is not required for enhanced Hop1-T318 phosphorylation

Next, we confirmed that the protein kinase activities of GST-Mek1-as and Mek1-as are not required for the enhancement of Hop1-T318 phosphorylation. To monitor the Mek1-as protein levels, the mek1Δ mutant was transformed with a PMEK1-mek1-as-V5 expression vector. The mek1-as-V5 allele encodes a V5-tagged Mek1-as protein. An addition of 5 µM 1-NM-PP1 to mek1Δ PMEK1-GST-mek1-as (Figure 3A and B) and mek1Δ PMEK1-mek1-as-V5 (Figure 3C and D) meiotic cells greatly diminished Rad54-T132 phosphorylation (31). In contrast, Hop1-T318 phosphorylation in mek1Δ PMEK1-GST-mek1-as (Figure 3A and B) and mek1Δ PMEK1-mek1-as-V5 (Figure 3C and D) was not affected or was only slightly affected by 1-NM-PP1, respectively. Thus, GST-Mek1-as and Mek1-as may not phosphorylate proteins that are directly involved in the Mec1/Tel1 recombination checkpoint.

Mek1 promotes Hop1-T318 phosphorylation in the presence of unrepaired DSBs

DSBs are more rapidly repaired through intersister recombination in the absence of Mek1 kinase activity (11). Mec1/Tel1-mediated Hop1 phosphorylation is DSB dependent (8,21). Accordingly, the lower Hop1-T318 phosphorylation levels detected in mek1Δ might simply be a consequence of faster DSB repair. This hypothesis was further examined here by comparing Hop1 and Hop1-T318 phosphorylation in rad51Δ dmc1Δ and mek1Δ rad51Δ dmc1Δ. The rad51Δ dmc1Δ double mutant persistently accumulates resected DSBs (or ssDNA) and produces markedly fewer CO products than the rad51Δ or dmc1Δ single mutants (53). Contrary to the hypothesis, we observed that the persistent hyperphosphorylation of Hop1-T318 and Hop1 was more profound in the rad51Δ dmc1Δ double mutant than in the mek1Δ rad51Δ dmc1Δ triple mutant (Figure 4A and B). This demonstrates that the loss of Hop1-T318 phosphorylation in the absence of Mek1 is not due to precocious DSB repair.

To further explore the effect of Mek1 on the overall Mec1 and Tel1 kinase activities in rad51Δ dmc1Δ, we examined Zip1-S75 phosphorylation and H2A-S129 phosphorylation by quantitative western blot analyses with anti-phospho-Zip1-S75 and anti-phospho-H2A-S129 antisera. Zip1-S75 phosphorylation was higher in mek1Δ rad51Δ dmc1Δ and lower in the wild-type strain than in rad51Δ dmc1Δ (Figure 4A and C). In contrast, similar levels of H2A-S129 phosphorylation were detected in these three strains (Figure 4A and D). The mek1Δ mutation is known to alleviate the prophase arrest or delay conferred by dmc1Δ and/or rad51Δ mutation (55). We found that the mek1Δ dmc1Δ rad51Δ triple mutant completed the first meiotic nuclear divisions (MI) faster than the dmc1Δ rad51Δ double mutant (Figure 4E). Thus, because the steady-state levels of Zip1 proteins were lower in the mek1Δ dmc1Δ rad51Δ triple mutant than in wild type or the dmc1Δ rad51Δ double mutant (Figure 4A, third bottom panel), we inferred that Zip1 proteins might be degraded faster in the mek1Δ dmc1Δ rad51Δ triple mutant. These results indicate that Mek1 does not affect overall Mec1 and Tel1 kinase activities. Mek1 might use a novel mechanism to stabilize Mec1/Tel1-mediated Hop1-T318 phosphorylation.

Hop1-T318 phosphorylation has a critical role in enhancing Mek1-mediated Hop1 phosphorylation

Hop1-T318 phosphorylation is required for both the activation and the chromosomal recruitment of Mek1 (21). To determine whether Hop1-T318 phosphorylation is also a prerequisite for the positive feedback function of Mek1, GST-mek1-as (2 µ) was introduced into the hop1T318A strain. In hop1T318A, the GST-Mek1-as protein failed to rescue the levels of phosphorylated Rad54-T132 (Figure 5A) or spore viability (Table 1). No phosphorylated Hop1-T318 was detected in either strain (Figure 5A). GST-Mek1-as did not increase overall ‘non-T318’ Hop1 phosphorylation or H2A-S129 phosphorylation, as indicated by similar band shifts in hop1T318A strains carrying GST-mek1-as (2 µ) or a mock vector. Although GST-Mek1-as increased Zip1-S75 phosphorylation ∼1.2-fold, the relative ratios of phosphorylated Zip1-S75 versus total Zip1 were similar in the presence or absence of GST-Mek1-as (Figure 5C). These results indicate that GST-Mek1-as unlikely affects overall Mec1 and Tel1 kinase activities and that Hop1-T318 phosphorylation is required for the positive feedback function of Mek1 in enhancing Hop1 phosphorylation.

Arginine 51 of Mek1 is required for the enhancement of Hop1-T318 phosphorylation

Several lines of evidence suggest that Hop1 and Mek1 may act similar to the Rad53-Dun1 signaling pathway. Dun1 and Rad53 are part of the DNA damage response during S. cerevisiae vegetative growth. Mec1 and Tel1 first activate Rad53, which in turn activates Dun1 (56,57). These two effector kinases, similar to Mek1 (9), are characterized by the forkhead-associated (FHA) domains that are essential for their activation in response to DNA damage. Rad53 contains two SCDs (SCD1 and SCD2) with high concentrations of Mec1/Tel1 phosphorylated sites. Two threonine residues, T5 and T8, are phosphorylated in the Rad53-SCD1 (1MENI5T[p]QP8T[p]QQSTQA15TQRFLI21E), and the diphosphorylated Rad53-SCD1 is bound by the Dun1-FHA domain (amino acid residues 19–159) to promote the phosphorylation-dependent activation of Dun1 (58,59). Two evolutionarily conserved positively charged residues (arginine 60 and lysine 100) in the Dun1-FHA domain have been shown to mediate the interaction between Dun1-FHA and diphosphorylated Rad53-SCD1 peptide (60). A structure-based sequence alignment revealed that arginine (R) 51 in Mek1-FHA is analogous to R60 in Dun1-FHA. A mutation of R51 to alanine (A) in the Mek1-FHA domain was shown to create a null allele (mek1R51A) (9). Notably, Rad53-SCD1 (5T[p]QP8T[p]QQST12) and Hop1-SCD (315IQP318T[p]QFVS322) share four identical amino acid residues (QPTQ) and a phosphorylated threonine. Accordingly, Mek1-R51 and Hop1-T318 phosphorylation may act together to mediate the interaction between Mek1-FHA and the phosphorylated Hop1-SCD. Thus, we inferred that R51 of Mek1 might stabilize Hop1-T318 phosphorylation. Therefore, we examined Rad54-T132 phosphorylation and Hop1-T318 phosphorylation in mek1Δ diploids transformed with PMEK1-GST-mek1-as or PMEK1-GST-mek1R51A-as. Overexpression of GST-Mek1-as or GST-Mek1R51A-as did not significantly alter total Hop1 protein levels (Figure 5B, second bottom panel). We found that, unlike GST-Mek1-as, GST-Mek1R51A-as promoted neither Hop1-T318 and Rad54-T132 phosphorylation (Figure 5B) nor spore viability (Table 1). These results support the model in which Mek1-FHA binds to phosphorylated Hop1-T318 and then stabilizes phosphorylated Hop1 against PP4-mediated dephosphorylation. Subsequently, Mek1 or GST-Mek1 is activated to phosphorylate Rad54-T132.

GST-Mek1 specifically enhances Hop1-T318 phosphorylation in pch2Δ rad17Δ

Previously, it was reported that the ectopic expression of Mek1-GST results in increased IH bias and CO formation, as well as a delayed MI phenotype, in the pch2Δ rad17Δ mutant (36). Rad17 is a component of the 9-1-1 checkpoint complex that promotes Mec1 kinase activity. Pch2 is a putative AAA-ATPase with important roles in pachytene checkpoint, normal SC assembly, and the distribution of DSBs and CO events (37–48). Compared with pch2Δ, pch2Δ rad17Δ exhibited lower levels of phosphorylated Rad54-T132, Hop1-T318, Zip1-S75 and H2A-S129 (Figure 6). Additionally, it has been shown that pch2Δ rad17Δ exhibits faster MI progression and lower spore viability than pch2Δ (36). We further observed markedly higher levels of Hop1-T318 phosphorylation and Rad54-T132 phosphorylation in MEK1-GST pch2Δ rad17Δ than in pch2Δ rad17Δ. Therefore, the MEK1-GST pch2Δ rad17Δ triple mutant is more similar to the pch2Δ single mutant than to the rad17Δ pch2Δ double mutant in terms of higher spore viability and delayed MI phenotypes (36). Consistently, the steady-state levels of phosphorylated Hop1 in MEK1-GST pch2Δ rad17Δ are similar to or slightly lower than those in pch2Δ rad17Δ, as revealed by anti-Hop1-T318 antibody and by the shifted bands detected with anti-Hop1 antibody (Figure 6). Due to a delayed MI phenotype (36), the levels of phosphorylated Rad54-T312 and Hop1-T318 persisted longer in the MEK1-GST pch2Δ rad17Δ triple mutant (Figure 6A). Notably, MEK1-GST did not significantly increase the maximum steady-state levels of H2A-S129 phosphorylation or Zip1-S75 phosphorylation in pch2Δ rad17Δ (Figure 4). We conclude that MEK1-GST did not increase the overall Mec1 and Tel1 kinase activities in pch2Δ rad17Δ, and that the Mek1-GST-dependent stabilization of Hop1-T318 phosphorylation is responsible for the partial rescue of the mek1-GST pch2Δ rad17Δ triple mutant.


The current manuscript provides new insights into the roles of the chromosome axis-associated kinase Mek1 in regulating IH recombination and checkpoint responses during yeast meiosis. Our results suggest that R51 of Mek1-FHA is critical for recognizing phosphorylated Hop1-T318 to activate Mek1 and that this interaction also stabilizes Hop1-T318 phosphorylation against PP4-dependent dephosphorylation during meiosis. The positive feedback function of Mek1 apparently does not affect Mec1 and Tel1 kinase activities on other substrates (such as Zip1-S75, H2A-S129 or non-T318 Hop1 sites). Our results also indicate that the GST-mediated dimerization may increase the protein stability of the Mek1 protein and thereby indirectly enhance Hop1-T318 phosphorylation. These findings can account for the semi-dominant phenotypes of GST-Mek1 and Mek1-GST (8,36), which rescue the spore viability of mek1Δ in the presence of Red1 and Hop1.

The stabilization of Hop1-T318 phosphorylation by GST-Mek1 also explains why the ectopic expression of Mek1-GST in pch2Δ rad17Δ promotes increased IH recombination and recombination checkpoint responses (36). The pch2Δ rad17Δ double mutant progresses more rapidly though MI than does the pch2Δ single mutant (40), and MEK1-GST promotes a delayed MI phenotype in pch2Δ rad17Δ (36). Our results indicate that the delayed MI phenotype of the pch2Δ single mutant and the MEK1-GST pch2Δ rad17Δ triple mutants are compatible with sustained elevated levels of phosphorylated Hop1-T318 and phosphorylated Rad54-T132. In contrast, less phosphorylated Hop1-T318 and phosphorylated Rad54-T132 proteins were detected in the pch2Δ rad17Δ double mutant, which progresses more rapidly through MI (Figure 6). Thus, the sustained elevation of Mek1 kinase activity apparently accounts for the delay in MI progression. It will be interesting to identify the downstream target(s) of Mek1 that are directly responsible for inhibiting cell cycle progression during meiotic prophase.

Our findings support a model in which Mek1 is a meiotic paralog of Dun1 in mediating cellular responses to DNA damage (Figure 7). These two checkpoint effector kinases apparently share similar upstream and downstream signaling mechanisms. The Dun1 signaling cascade involves the Mec1/Tel1-dependent phosphorylation of Rad53-SCD1. The phosphorylated Rad53-SCD1 (at T5 and T8) specifically recognizes Dun1-FHA, leading to the recruitment and activation of Dun1 to sites of DNA damage during DNA replication (56,59,60). One important function of Dun1 is the regulation of cellular dNTP levels (57,61–63). On the other hand, the Mek1 signaling cascade involves the Mec1/Tel1-dependent phosphorylation of the Hop1-SCD (21,64). The phosphorylated Hop1-SCD (T318) specifically recognizes Mek1-FHA, leading to the recruitment and activation of Mek1 at the sites of developmentally programmed DSBs during meiotic prophase. The best-known target of Mek1 is Rad54, and Rad54 phosphorylation prevents Rad54 from binding to and activating Rad51 in vitro (31). Further studies will be conducted to examine whether phosphorylation-dependent inactivation (or degradation) is a general mechanism by which Mek1 regulates its downstream targets at DSB sites and chromosome axes.


Funding for open access charge: The National Science Council and Academia Sinica, Taiwan (to T.F.W.).

Conflict of interest statement. None declared.


The authors thank Sean Burgess (University of California, Davis), Rita Cha (MRC, London), Valentin Börner (Cleveland State University), Nancy Hollingsworth (Stony Brook University) and Douglas Bishop (University of Chicago) for the yeast strains used in this study; Chung Wang (IMB, Academia Sinica) for providing anti-Hsp104 antibodies and AndreAna Peña (IMB, Academia Sinica) for English editing.

1. Keeney S. Mechanism and control of meiotic recombination initiationCurr. Top. Dev. Biol.Year: 20015215311529427
2. Kadyk LC,Hartwell LH. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiaeGeneticsYear: 19921323874021427035
3. Neale MJ,Pan J,Keeney S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaksNatureYear: 20054361053105716107854
4. Zakharyevich K,Ma Y,Tang S,Hwang PY,Boiteux S,Hunter N. Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctionsMol. CellYear: 2010401001101521172664
5. Hodgson A,Terentyev Y,Johnson RA,Bishop-Bailey A,Angevin T,Croucher A,Goldman AS. Mre11 and Exo1 contribute to the initiation and processivity of resection at meiotic double-strand breaks made independently of Spo11DNA RepairYear: 20111013814821146476
6. San Filippo J,Sung P,Klein H. Mechanism of eukaryotic homologous recombinationAnnu. Rev. Biochem.Year: 20087722925718275380
7. Sheridan S,Bishop DK. Red-Hed regulation: recombinase Rad51, though capable of playing the leading role, may be relegated to supporting Dmc1 in budding yeast meiosisGenes Dev.Year: 2006201685169116818601
8. Niu H,Wan L,Baumgartner B,Schaefer D,Loidl J,Hollingsworth NM. Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1Mol. Biol. CellYear: 2005165804581816221890
9. Wan L,de los Santos T,Zhang C,Shokat K,Hollingsworth NM. Mek1 kinase activity functions downstream of RED1 in the regulation of meiotic double strand break repair in budding yeastMol. Biol. Cell.Year: 200415112314595109
10. Terentyev Y,Johnson R,Neale MJ,Khisroon M,Bishop-Bailey A,Goldman AS. Evidence that MEK1 positively promotes interhomologue double-strand break repairNucleic Acids Res.Year: 2010384349436020223769
11. Goldfarb T,Lichten M. Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosisPLoS Biol.Year: 20108e100052020976044
12. Kim KP,Weiner BM,Zhang L,Jordan A,Dekker J,Kleckner N. Sister cohesion and structural axis components mediate homolog bias of meiotic recombinationCellYear: 201014392493721145459
13. Rockmill B,Roeder GS. RED1: a yeast gene required for the segregation of chromosomes during the reductional division of meiosisProc. Natl Acad. Sci. USAYear: 198885605760613413075
14. Rockmill B,Roeder GS. A meiosis-specific protein kinase homolog required for chromosome synapsis and recombinationGenes Dev.Year: 19915239224041752435
15. Hollingsworth NM,Ponte L. Genetic interactions between HOP1, RED1 and MEK1 suggest that MEK1 regulates assembly of axial element components during meiosis in the yeast Saccharomyces cerevisiaeGeneticsYear: 199714733429286666
16. Smith AV,Roeder GS. The yeast Red1 protein localizes to the cores of meiotic chromosomesJ. Cell. Biol.Year: 19971369579679060462
17. Blat Y,Protacio RU,Hunter N,Kleckner N. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formationCellYear: 200211179180212526806
18. Sym M,Engebrecht JA,Roeder GS. Zip1 is a synaptonemal complex protein required for meiotic chromosome synapsisCellYear: 1993723653787916652
19. Lin FM,Lai YJ,Shen HJ,Cheng YH,Wang TF. Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsisEMBO J.Year: 20102958659619959993
20. Eichinger CS,Jentsch S. Synaptonemal complex formation and meiotic checkpoint signaling are linked to the lateral element protein Red1Proc. Natl Acad. Sci. USAYear: 2010107113701137520534433
21. Carballo JA,Johnson AL,Sedgwick SG,Cha RS. Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombinationCellYear: 200813275877018329363
22. Carballo JA,Cha RS. Meiotic roles of Mec1, a budding yeast homolog of mammalian ATR/ATMChromosome Res.Year: 20071553955017674144
23. Cartagena-Lirola H,Guerini I,Viscardi V,Lucchini G,Longhese MP. Budding yeast Sae2 is an in vivo target of the Mec1 and Tel1 checkpoint kinases during meiosisCell CycleYear: 200651549155916861895
24. Cartagena-Lirola H,Guerini I,Manfrini N,Lucchini G,Longhese MP. Role of the Saccharomyces cerevisiae Rad53 checkpoint kinase in signaling double-strand breaks during the meiotic cell cycleMol. Cell. Biol.Year: 2008284480449318505828
25. Longhese MP,Bonetti D,Guerini I,Manfrini N,Clerici M. DNA double-strand breaks in meiosis: checking their formation, processing and repairDNA RepairYear: 200981127113819464965
26. Falk JE,Chan AC,Hoffmann E,Hochwagen A. A Mec1- and PP4-dependent checkpoint couples centromere pairing to meiotic recombinationDev. CellYear: 20101959961120951350
27. Keogh MC,Kim JA,Downey M,Fillingham J,Chowdhury D,Harrison JC,Onishi M,Datta N,Galicia S,Emili A,et al. A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recoveryNatureYear: 200643949750116299494
28. O’Neill BM,Szyjka SJ,Lis ET,Bailey AO,Yates JR 3rd,Aparicio OM,Romesberg FE. Pph3–Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damageProc. Natl Acad. Sci. USAYear: 20071049290929517517611
29. Chu S,DeRisi J,Eisen M,Mulholland J,Botstein D,Brown PO,Herskowitz I. The transcriptional program of sporulation in budding yeastScienceYear: 19982826997059784122
30. Tung KS,Hong EJ,Roeder GS. The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80Proc. Natl Acad. Sci. USAYear: 200097121871219211035815
31. Niu H,Wan L,Busygina V,Kwon Y,Allen JA,Li X,Kunz RC,Kubota K,Wang B,Sung P,et al. Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylationMol. CellYear: 20093639340419917248
32. Govin J,Dorsey J,Gaucher J,Rousseaux S,Khochbin S,Berger SL. Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesisGenes Dev.Year: 2010241772178620713519
33. Heyer WD,Li X,Rolfsmeier M,Zhang XP. Rad54: the Swiss Army knife of homologous recombination?Nucleic Acids Res.Year: 2006344115412516935872
34. Shinohara M,Gasior SL,Bishop DK,Shinohara A. Tid1/Rdh54 promotes colocalization of Rad51 and Dmc1 during meiotic recombinationProc. Natl Acad. Sci. USAYear: 200097108141081911005857
35. Shinohara M,Sakai K,Shinohara A,Bishop DK. Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathwayGeneticsYear: 20031631273128612702674
36. Wu HY,Ho HC,Burgess SM. Mek1 kinase governs outcomes of meiotic recombination and the checkpoint responseCurr. Biol.Year: 2010201707171620888230
37. San-Segundo PA,Roeder GS. Pch2 links chromatin silencing to meiotic checkpoint controlCellYear: 19999731332410319812
38. San-Segundo PA,Roeder GS. Role for the silencing protein Dot1 in meiotic checkpoint controlMol. Biol. CellYear: 2000113601361511029058
39. Bhalla N,Dernburg AF. A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegansScienceYear: 20053101683168616339446
40. Wu HY,Burgess SM. Two distinct surveillance mechanisms monitor meiotic chromosome metabolism in budding yeastCurr. Biol.Year: 2006162473247917174924
41. Li XC,Schimenti JC. Mouse pachytene checkpoint 2 (trip13) is required for completing meiotic recombination but not synapsisPLoS Genet.Year: 20073e13017696610
42. Borner GV,Barot A,Kleckner N. Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosisProc. Natl Acad. Sci. USAYear: 20081053327333218305165
43. Joshi N,Barot A,Jamison C,Borner GV. Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosisPLoS Genet.Year: 20095e100055719629172
44. Joyce EF,McKim KS. Drosophila PCH2 is required for a pachytene checkpoint that monitors double-strand-break-independent events leading to meiotic crossover formationGeneticsYear: 2009181395118957704
45. Wojtasz L,Daniel K,Roig I,Bolcun-Filas E,Xu H,Boonsanay V,Eckmann CR,Cooke HJ,Jasin M,Keeney S,et al. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPasePLoS Genet.Year: 20095e100070219851446
46. Zanders S,Alani E. The pch2Δ mutation in baker’s yeast alters meiotic crossover levels and confers a defect in crossover interferencePLoS Genet.Year: 20095e100057119629178
47. Roig I,Dowdle JA,Toth A,de Rooij DG,Jasin M,Keeney S. Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosisPLoS Genet.Year: 20106e100106220711356
48. Vader G,Blitzblau H,Tame M,Falk J,Curtin L,Hochwagen A. Protection of repetitive DNA borders from self-induced meiotic instabilityNatureYear: 201147711511921822291
49. Ho HC,Burgess SM. Pch2 acts through Xrs2 and Tel1/ATM to modulate interhomolog bias and checkpoint function during meiosisPLoS Genet.Year: 20117e100235122072981
50. Redon C,Pilch DR,Rogakou EP,Orr AH,Lowndes NF,Bonner WM. Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damageEMBO Rep.Year: 2003467868412792653
51. Lai YJ,Lin FM,Chuang MJ,Shen HJ,Wang TF. Genetic requirements and meiotic function of phosphorylation of the yeast axial element protein red1Mol. Cell. Biol.Year: 20113191292321173162
52. Bishop AC,Shokat KM. Acquisition of inhibitor-sensitive protein kinases through protein designPharmacol. Ther.Year: 19998233734610454210
53. Shinohara A,Gasior S,Ogawa T,Kleckner N,Bishop DK. Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombinationGenes CellsYear: 199726156299427283
54. Burgess RC,Lisby M,Altmannova V,Krejci L,Sung P,Rothstein R. Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivoJ. Cell. Biol.Year: 200918596998119506039
55. Xu L,Weiner BM,Kleckner N. Meiotic cells monitor the status of the interhomolog recombination complexGenes Dev.Year: 1997111061189000054
56. Sanchez Y,Zhou Z,Huang M,Kemp BE,Elledge SJ. Analysis of budding yeast kinases controlled by DNA damageMethods Enzymol.Year: 19972833984109251037
57. Chen SH,Smolka MB,Zhou H. Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiaeJ. Biol. Chem.Year: 200728298699517114794
58. Bashkirov VI,Bashkirova EV,Haghnazari E,Heyer WD. Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinaseMol. Cell. Biol.Year: 2003231441145212556502
59. Lee SJ,Schwartz MF,Duong JK,Stern DF. Rad53 phosphorylation site clusters are important for Rad53 regulation and signalingMol. Cell. Biol.Year: 2003236300631412917350
60. Lee H,Yuan C,Hammet A,Mahajan A,Chen ES,Wu MR,Su MI,Heierhorst J,Tsai MD. Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascadeMol. CellYear: 20083076777818570878
61. Zhao X,Chabes A,Domkin V,Thelander L,Rothstein R. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damageEMBO J.Year: 2001203544355311432841
62. Zhao X,Muller EG,Rothstein R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP poolsMol. CellYear: 199823293409774971
63. Zhao X,Rothstein R. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1Proc. Natl Acad. Sci. USAYear: 2002993746375111904430
64. Niu H,Li X,Job E,Park C,Moazed D,Gygi SP,Hollingsworth NM. Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosisMol. Cell. Biol.Year: 2007275456546717526735


[Figure ID: gks920-F1]
Figure 1. 

Validation of antisera against phosphorylated Hop1-T318 (A–C), Zip1-S75 (D) and Rad54-T132 (E). Western blot time course analyses of meiotic cells were performed as described previously (19,51). Wild-type and mutant strains at different sporulation time points are indicated. Anti-Hop1, anti-Zip1, anti-phospho-Hop1-T318, anti-phospho-Rad54-T132 and anti-phospho-Zip1-S75 antibodies were used to detect the corresponding proteins. Antibody against Hsp104 was used as a loading control. Molecular weights (in kiloDaltons) are indicated to the left of the blots.

[Figure ID: gks920-F2]
Figure 2. 

Mek1 and GST-Mek1-as enhance Rad54-T132 phosphorylation and Hop1-T318 phosphorylation. The mek1Δ diploid cells were transformed with an empty 2 µ vector or a vector carrying MEK1 (A), GST-mek1-as (A and C) or gst(nd)-mek1-as (C). The MEK1 and mek1Δ diploid cells express Rad54-YFP proteins (E). The expression levels of various phosphoproteins were visualized by western blot analysis. (B, D and F) Quantitation of western blot results in (A, C and E) (see ‘Materials and Methods’ section). The relative levels of different phosphoproteins versus Hsp104 (loading control) at each time point are shown.

[Figure ID: gks920-F3]
Figure 3. 

Mek1 kinase activity is not required for the enhancement of Hop1-T318 phosphorylation. The mek1Δ GST-mek1-as (2 µ) (A) and mek1Δ mek1-as-V5 (2 µ) (C) diploid cells underwent sporulation in SPM with 0 or 5 µM 1-NM-PP1. The expression levels of various phosphoproteins were visualized by western blot analysis. (B, D) Quantitation of western blot results in (A) and (C).

[Figure ID: gks920-F4]
Figure 4. 

Mek1 promotes Hop1-T318 phosphorylation in the presence of unrepaired DSBs. (A–D) Quantitative western blot results of various phosphoproteins in rad51Δ dmc1Δ and rad51Δ dmc1Δ mek1Δ diploid cells. (E) Timing of nuclear division (MI). Cells that had completed MI were identified by determining the number of cells with two to four DAPI-staining nuclei.

[Figure ID: gks920-F5]
Figure 5. 

Hop1-T318 phosphorylation and arginine (R) 51 of Mek1 are required for the enhancement of Hop1-phosphorylation by Mek1. (A) hop1T318A diploids were transformed with a mock 2 µ vector or a vector carrying GST-MEK1-as. (B) mek1Δ diploids were transformed with GST-mek1-as or GST-mek1R51A-as, respectively. Western blot analyses of various phosphoproteins and proteins by the corresponding antibodies. (C and D) Quantitation of western blot results in (A) and (B).

[Figure ID: gks920-F6]
Figure 6. 

Mek1-GST specifically stabilizes Hop1-T318 phosphorylation in a pch2Δ rad17Δ mutant. Hsp104 was used as a loading control.

[Figure ID: gks920-F7]
Figure 7. 

Mek1 is a meiotic paralog of Dun1 in mediating cellular responses to DNA damage.

[TableWrap ID: gks920-T1] Table 1. 

Genotypes and spore viabilitya

Strain Genotype % Viable spores Numbers of spores
WHY3285 ho::hisG/″, leu2::hisG/″, HIS4::LEU2-(BamHI)/his4-X::LEU2-(BamHI)–URA3 98 204
WHY2947 hop1Δ/″ 0 144
WHY8853b hop1Δ/″, ura3::hop1T318A::URA3/″, dmc1Δ/″ n.d.c n.d.
WHY7706 tel1Δ/″ 85 240
WHY9047b mec1-kd/″, sml1Δ/″ 28 216
WHY9754 mec1-kd/″, sml1Δ/″, tel1Δ/″ 0 216
WHY9174 pph3Δ/″ n.d. n.d.
WHY10228 mek1Δ/″, PMEK1-mek1-as-V5 (2 µ) 96 216
WHY9384 mek1Δ/″, mock vector (2 µ) 3 212
WHY9978 mek1Δ/″, PMEK1-MEK1 (2 µ) 94 208
WHY9385 mek1Δ/″, PMEK1-GST-mek1-as (2 µ) 95 212
WHY10134 mek1Δ/″, PMEK1-GST-mek1R51A-as (2 µ) 4 212
WHY9386 hop1Δ/″, ura3::hop1T318A::URA3/″, mock vector (2 µ) <1 108
WHY9387 hop1Δ/″, ura3::hop1T318A::URA3/″, PMEK1-GST-mek1-as (2 µ) <1 96
WHY9755d rad54Δ/″, ura3:: RAD54::URA3/″ 90 212
WHY9746d rad54Δ/″, ura3:: rad54T132A::URA3/″ 92 212
WHY2766 rad51Δ/″, dmc1Δ/″ n.d. n.d.
WHY9954 rad51Δ/″, dmc1Δ/″, mek1Δ/″ n.d. n.d.
WHY9083 pch2Δ/″, 99 144
WHY9382e pch2Δ/″, rad17Δ/″, MEK1-GST/″ 52 144
WHY9383e pch2Δ/″, rad17Δ/″ <1 128
WHY10175 mek1Δ/″, PMEK1-gst(nd)-mek1-as (2 µ) 80 216
WHY10281 RAD54-YFP/RAD54-YFP 89 216
WHY10315 RAD54-YFP/RAD54-YFP, mek1Δ/″ 4 208

gks920-TF1aAll strains are SK1 MATa/MATα diploids. Tetrads with four spores were dissected and analyzed following sporulation in liquid medium at 30°C. bWHY8853 and WHY9047 were gifts from Rita Cha (21). cn.d. (not determined). dWHY9755 and WHY9746 were gifts from Nancy Hollingsworth (31). eWHY9382 and WHY9383 were gifts from Sean Burgess (36).

Article Categories:
  • Genome Integrity, Repair and Replication

Previous Document:  The activity of G-ROS and the predominant role of Type II reaction in the photodynamic therapy using...
Next Document:  Regulation of human Dicer by the resident ER membrane protein CLIMP-63.