Document Detail

Mechanisms of fetal programming in hypertension.
Jump to Full Text
MedLine Citation:
PMID:  22319540     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
Events that occur in the early fetal environment have been linked to long-term health and lifespan consequences in the adult. Intrauterine growth restriction (IUGR), which may occur as a result of nutrient insufficiency, exposure to hormones, or disruptions in placental structure or function, may induce the fetus to alter its developmental program in order to adapt to the new conditions. IUGR may result in a decrease in the expression of genes that are responsible for nephrogenesis as nutrients are rerouted to the development of more essential organs. Fetal survival under these conditions often results in low birth weight and a deficit in nephron endowment, which are associated with hypertension in adults. Interestingly, male IUGR offspring appear to be more severely affected than females, suggesting that sex hormones may be involved. The processes of fetal programming of hypertension are complex, and we are only beginning to understand the underlying mechanisms.
Authors:
John Edward Jones; Julie A Jurgens; Sarah A Evans; Riley C Ennis; Van Anthony M Villar; Pedro A Jose
Publication Detail:
Type:  Journal Article     Date:  2012-01-27
Journal Detail:
Title:  International journal of pediatrics     Volume:  2012     ISSN:  1687-9759     ISO Abbreviation:  Int J Pediatr     Publication Date:  2012  
Date Detail:
Created Date:  2012-02-09     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101517077     Medline TA:  Int J Pediatr     Country:  Egypt    
Other Details:
Languages:  eng     Pagination:  584831     Citation Subset:  -    
Affiliation:
Center for Molecular Physiology Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Int J Pediatr
Journal ID (publisher-id): IJPED
ISSN: 1687-9740
ISSN: 1687-9759
Publisher: Hindawi Publishing Corporation
Article Information
Download PDF
Copyright © 2012 John Edward Jones et al.
open-access:
Received Day: 14 Month: 10 Year: 2011
Accepted Day: 29 Month: 11 Year: 2011
Print publication date: Year: 2012
Electronic publication date: Day: 27 Month: 1 Year: 2012
Volume: 2012E-location ID: 584831
ID: 3272807
PubMed Id: 22319540
DOI: 10.1155/2012/584831

Mechanisms of Fetal Programming in Hypertension
John Edward Jones*
Julie A. Jurgens
Sarah A. Evans
Riley C. Ennis
Van Anthony M. Villar
Pedro A. Jose
Center for Molecular Physiology Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
Correspondence: *John Edward Jones: jjones2@medicine.umaryland.edu
[other] Academic Editor: Umut Selda Bayrakci

1. Introduction

Hypertension is a powerful independent risk factor for the development of well-known cardiovascular and cerebrovascular morbidities that include myocardial infarction, stroke, atherosclerosis, and death. It is a prevalent disorder that affects close to a quarter of the adult population worldwide [1]. Although often considered as a late-onset chronic disorder, hypertension is now recognized to afflict the young population, from neonates to adolescents. While the diagnosis of hypertension in adults is based on empirically determined cut-off values for both systolic and diastolic blood pressure (BP), the diagnosis of pediatric hypertension is not as straightforward since it is based on normative data [2]. Hypertension in the young is defined as the average systolic or diastolic BP that is ≥95th percentile according to age, sex, and height on three or more occasions [2]. There are no target BP values that indicate high blood pressure in children, since BP changes with age; neonates have low BP that gradually increases with age [3]. The prevalence of pediatric hypertension is estimated at 1-2% [4] and seems to have steadily increased during the past decade, which correlates with the increase in the prevalence of obesity [5].

A striking concept on the etiology of hypertension that has emerged during the last few decades is what is known as fetal imprinting, or developmental programming. This concept refers to the observation that adverse environmental insults early in life, particularly during critical periods of development in utero and the early postnatal period, can result in silent yet long-term morphological and physiological alterations that eventually translate into disease in adulthood [6]. The correlation between adverse intrauterine conditions and subsequent cardiovascular disorders was first proposed by Barker who reported a link between the mortality rate of coronary artery disease and birth weight [7, 8]. Barker hypothesized that adaptive responses to an environmental insult during early life may persist and become harmful during adulthood when the insult is no longer present. A compelling body of work from various groups around the world has corroborated these findings and has expanded the concept to include other conditions such as type 2 diabetes, obesity, and chronic kidney disease [6].

The biological and molecular mechanisms involved in fetal imprinting are multiple, though not completely understood, and include low birth weight (“small baby syndrome”), glucocorticoid excess, uteroplacental deficiency, sexual dimorphism, and epigenetics.


2. Low Birth Weight and Hypertension

Low birth weight (LBW), defined as birth weight of <2500 g by the World Health Organization, may arise from intrauterine growth restriction (IUGR, or birth weight that is <10th percentile for gestational age) or prematurity [6], with the former exerting a stronger predisposition for disease to develop and manifest later in life [9]. Several animal models have demonstrated the inverse relationship between LBW and hypertension [10, 11], which was attributable to a deficit in nephron number. Moreover, humans with LBW have significantly higher BPs, even after correction for various modifiers such as sex, cigarette smoking, weight, and use of oral contraceptives [6].

Two distinct mechanisms have been proposed to explain why LBW antedates the development of adult hypertension. Numerous studies indicate that birth weight is a strong predictor of nephron number and mean glomerular volume in several racial groups [12, 13]. In humans, nephrons are formed between 28–34 weeks of gestation, after which the individual has achieved a finite nephron number endowment for life (an average of 750,000 per kidney), that is, no additional nephrons are formed thereafter [14, 15]. Postnatally, an increase in tubular length and glomerular size, which varies inversely with nephron number, is achieved [16]. IUGR curtails the formation of adequate nephron number in the growing fetus, which compromises the available filtration surface area and leads to hypertension in adults [17]. Nephron-deficient rats have been shown to exhibit sodium-dependent hypertension and albuminuria [18], while postmortem examination of kidneys from hypertensive Caucasians reveals significantly fewer glomeruli per kidney and greater glomerular volume [19]. Infants who suffered from IUGR have 30–35% reduced nephron number endowment [20]. Endothelial dysfunction in individuals with LBW is another mechanism that may explain the development of hypertension later in life [21]. The perturbation of endothelial function may be due to impaired angiogenesis during fetal development or an apparent reduction in the production or function of nitric oxide [21, 22].

Other factors such as increases in inflammatory cytokines, the expression of metabolic genes, and changes in blood vessel formation—all of which can contribute to high blood pressure in adults—have been detected in fetuses with IUGR [2326]. Additionally, the expression and activity of ion transporters such as Na+K+-ATPase [27] and sodium-hydrogen exchanger 3 [28] are increased with IUGR, which may affect how electrolyte uptake or excretion is regulated in adulthood.


3. Uteroplacental Insufficiency and Hypertension

In 3–10% of pregnancies in the Western world, the flow of blood from mother to fetus is inadequate, resulting in utero-placental insufficiency (UPI) [29]. UPI subjects the fetus to stressors which are not normally encountered during development, such as hypoxia, altered hormone concentrations, and decreased nutrition. These unfavorable environmental factors result in the development of conditions such as IUGR [30], which typically begins midway through pregnancy and continues through the end of gestation [31]. In the presence of UPI, the fetus must deviate from its normal developmental trajectory during this critical period of growth in order to ensure the formation of vital organs and survival in adverse conditions. Though these changes may be beneficial during early life, they often lead to deleterious conditions such as hypertension in adulthood [3234].

The trafficking of nutrients, hormones, and other factors essential for the development of the kidneys and vasculature is disrupted in IUGR placentas and thus may play a role in the development of hypertension. Studies have shown that downregulation of amino acid transporters [3540], lowered fetomaternal blood flow [35, 41], and structural abnormalities are present in IUGR placentas [4244]. Since the placenta is the medium through which the fetus receives all factors necessary for growth, disruptions in placental structure or function may alter the development of fetal vasculature, organs, or signaling pathways in ways that predispose the fetus to later development of hypertension.

As previously mentioned, the process of nephrogenesis in humans is completed by weeks 34–36 of gestation [14, 15]. IUGR that occurs prior to the generation of the full nephron complement may result in reduced renal mass [4547], decreased nephron and glomerular endowment, and increased protein excretion [46, 4850].

IUGR may result in a decrease in the expression of genes involved in nephrogenesis [51, 52], as well as a rerouting of nutrients from the kidney to more essential organs such as the brain, adrenal glands, and heart in order to enable survival of the fetus [53, 54]. While such changes allow for fetal survival during early development, they may increase the risk of susceptibility to renal injury or malfunction during adulthood [5557] as a result of diminished nephron number and renal size [17, 5860].

Studies of IUGR in animal models have demonstrated how highly sensitive the developing kidney is to perturbations of the intrauterine environment, especially during the early stages of nephrogenesis. Maternal dietary manipulation is commonly employed to induce IUGR during fetal development [46, 47] which results in reduced nephrogenesis, suppression of the renin-angiotensin system (RAS), and hypertension in the adult animal. Significantly, the timing of the induction of fetal IUGR is directly related to the outcome in the adult. The greatest impact on adult blood pressure is observed when IUGR coincides with the period of nephrogenesis. This indicates the importance of kidney morphology in the programming of blood pressure in the adult [49].


4. Sexual Dimorphism and Hypertension

Sex hormones may have a regulatory effect on the development of hypertension in adult IUGR offspring. While both male and female IUGR offspring are hypertensive early in life, only males remain hypertensive into adulthood. Many studies have shown that estrogen may play a protective role against the development of hypertension in female IUGR offspring [61]. This is supported by the fact that postmenopausal women are at an increased risk for hypertension. In animal models, ovariectomized female IUGR offspring become hypertensive like their male counterparts, whereas non-IUGR control females do not become hypertensive [61]. Estradiol (E2) replacement lowered blood pressure in both IUGR and control rats. It was also found that E2 levels at 16 weeks of age were not significantly different between IUGR and control offspring [61]. This seems to suggest that the protective role of estrogen does not play a direct role in regulating blood pressure, but may do so by regulating another mechanism such as the RAS.

Testosterone seems to play a role in the stimulation of the RAS as well, which may explain the increased blood pressure in male IUGR offspring [61]. Testosterone levels were significantly higher in intact male IUGR offspring when compared to control offspring [62]. This may inappropriately stimulate the RAS and increase blood pressure [63]. Hypertension was abolished in male IUGR offspring that underwent castration, and treatment with testosterone raised their blood pressure back to hypertensive levels [62, 63]. Castration of the male control rats did not have a significant effect on blood pressure [62, 63]. The ACE inhibitor Enalapril abolished hypertension in both male and female IUGR offspring, indicating that the RAS is involved in the regulation of hypertension. Taken together, it seems that testosterone acts as a stimulant of the RAS, which increases blood pressure, while estrogen acts as an inhibitor, lowering blood pressure in females.

Maternal diet has been shown to have a large impact on the fetal programming of hypertension, although this too has a clear sexual dimorphism. Males appear to be much more sensitive to insult in utero than their female counterparts [64]. Studies show that in cases of moderate fetal insult due to a protein-restricted or global-restricted diet, male IUGR offspring developed and remained hypertensive while their female counterparts seemed to be protected [16, 64]. Female IUGR offspring only responded with an increase in blood pressure to severe insult during development [64]. There could be two reasons to explain this dichotomy. One may be the influence of the sex hormones testosterone and estrogen on the RAS. Increased testosterone levels in male IUGR offspring may explain their increased sensitivity to hypertension, while the effect of estrogen explains the protected status of female offspring. Another explanation may be “catch-up growth” of IUGR offspring. While both males and females exhibit low birth weight as a result of reduced uterine perfusion, male IUGR offspring undergo catch-up growth [16, 64, 65]. This causes male IUGR offspring to have an above-average body mass as adults, which may be a factor in the development of hypertension [64].


5. Glucocorticoids and Hypertension

Glucocorticoids are potent regulators of fetal growth and have been associated with long-term effects on the development and morphogenesis of the growing fetus. Corticosteroid therapy for neonates at risk of preterm delivery and respiratory distress syndrome (RDS) has been the standard of treatment since the landmark paper by Liggins and Howie in 1972 [66]. Some pathophysiological effects of glucocorticoid excess are hypertension, impaired sugar metabolism, and abnormalities in neuroendocrine responses [6769].

There are two ways by which an elevation of glucocorticoids may occur in utero. First, suboptimal placental or maternal nutrient supply results in increased glucocorticoid levels, which restrict fetal growth and program permanent changes in the cardiovascular, endocrine, and metabolic systems [70]. Second, exposure to exogenous glucocorticoids may occur, such as in neonates treated with glucocorticoids for respiratory-related disorders. Antenatal administration of exogenous or increased endogenous glucocorticoids results in LBW [71] and alters the maturation of a variety of organs.

Glucocorticoids are lipophilic molecules that cross the placenta. Fetal glucocorticoid levels are much lower than maternal levels. In order to maintain this difference, the placenta is saturated with the enzyme 11-β-hydroxysteroid dehydrogenase type 2 (11-β-HSD2), which rapidly inactivates glucocorticoids to their inert 11-keto forms (cortisone, 11-dehydrocorticosterone) [72]. This process reduces fetal exposure to maternally active glucocorticoids. If the fetus is genetically deficient in the 11-β-HSD2, it may exhibit LBW and metabolic disorders. For example, heterozygous individuals carrying the deleterious 11-β-HSD2 gene allele had extremely low birth weights with respect to siblings who were homozygous for the wild-type gene and born with normal weights [69]. Studies in rats show that a decrease in 11-β-HSD2 activity results in LBW and hypertension in the adult animal [73].

The exact mechanism of action for glucocorticoids and the pathogenesis of hypertension have been characterized in several physiological systems. Increased production of reactive oxygen species, the activation of the RAS, and impairment of nephron development are all associated with increased sodium retention in neonates exposed to glucocorticoids [68, 74]. Research has found a critical period in early fetal development during which glucocorticoid treatment will lead to hypertension; soon after this time period, most of the organs will have developed, and thus glucocorticoid exposure will not have as profound an effect on their morphogenesis. In one study, offspring of pregnant ewes exposed to glucocorticoids developed impaired renal function and glomerular filtration rate. In two-month-old female offspring of these glucocorticoid-treated ewes, the α-, β-, γ-subunits of Na+/K+-ATPase were upregulated in the kidney, indicating a potential mechanism of action for development of hypertension [75].

Genetic predisposition can also play a role in the alteration of the glucocorticoid receptor function. The 23 K variant of the R23K SNP of the glucocorticoid receptor has been shown to protect against neonatal development of insulin resistance and growth failure. This has been shown by a study that evaluated the relative sensitivity of an individual to cortisol in a cohort of 249 19-year-old subjects who were born at less than 32 weeks gestational age. The investigators determined that genomic polymorphisms may play a role in the sensitivity of neonates to glucocorticoid exposure and may have permanent effects as a result of fetal programming [76]. Mutations in the 11-β-HSD2 have been linked with very low birth weights in patients with apparent mineralocorticoid excess, leading to juvenile hypertension [74].


6. Fetal Programming and Epigenetics

Epigenetic modification of DNA by methylation occurs primarily at CpG dinucleotides and serves as a mechanism of gene silencing. Studies using rodent models of maternal protein restriction during gestation have shown that reduced methylation of genes occurs in the offspring [77, 78]. Using a similar system, Bogdarina et al. [79] demonstrated decreased methylation at the proximal promoter region of the angiotensin receptor, type b gene (Agtr1b), which correlated with increased expression of the receptor in the adrenal gland of the offspring. Agtr1b, however, is not found in humans. Nevertheless, these results suggest a link between IUGR and epigenetic modification of genes related to the regulation of blood pressure [78]. More recently, Bogdarina et al. [80] found that treating pregnant rats with metyrapone, an 11 β-hydroxylase inhibitor, during the first two weeks of pregnancy normalized the methylation of the promoter region of the Agtr1b, reduced the expression of the Agtr1b receptor, and prevented the development of hypertension in the offspring. While few of these types of studies have been conducted, the results are exciting and further investigation is certainly warranted.


7. Conclusion

Twenty years ago, Hales and Barker proposed that events that occur in the early fetal environment may be linked to long-term health and lifespan consequences in the adult [81]. Numerous subsequent studies have largely supported their hypothesis and serve to illustrate the overarching complexity of the maternal-fetal-environmental interaction. While this review was necessarily limited in scope to only the effect of IUGR on hypertension, the reader should be made aware that this is but one component of a constellation of metabolic disorders that may arise as a result of a severe perturbation of the fetal environment.

The focus of most of the studies reviewed has been the impact of IUGR on the adult animal. We would suggest that additional studies be devoted to elucidating the mechanisms employed by the fetus in order to rapidly adapt to its altered environment. It is by better understanding these mechanisms that we may be able to develop interventional strategies that may prevent the onset of disease in the adult.


References
1. Staessen JA,Kuznetsova T,Stolarz K. Hypertension prevalence and stroke mortality across populationsJournal of the American Medical AssociationYear: 2003289182420242212746368
2. Falkner B,Daniels SR,Flynn JT,et al. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescentsPediatricsYear: 2004114255557615286277
3. Guignard JP. Hypertension in the neonateClinical and Experimental HypertensionYear: 198684-5723739
4. Jones JE,Jose PA. Hypertension in young children and neonatesCurrent Hypertension ReportsYear: 20057645446016386202
5. Din-Dzietham R,Liu Y,Bielo MV,Shamsa F. High blood pressure trends in children and adolescents in national surveys, 1963 to 2002CirculationYear: 2007116131488149617846287
6. Zandi-Nejad K,Luyckx VA,Brenner BM. Adult hypertension and kidney disease: the role of fetal programmingHypertensionYear: 200647350250816415374
7. Barker DJP. in utero programming of chronic diseaseClinical ScienceYear: 19989521151289680492
8. Barker DJP. The fetal and infant origins of adult diseaseBritish Medical JournalYear: 19903016761p. 1111
9. Yiu V,Buka S,Zurakowski D,McCormick M,Brenner B,Jabs K. Relationship between birthweight and blood pressure in childhoodAmerican Journal of Kidney DiseasesYear: 199933225326010023635
10. Manning J,Vehaskari VM. Low birth weight-associated adult hypertension in the ratPediatric NephrologyYear: 200116541742211405116
11. Poladia DP,Kish K,Kutay B,Bauer J,Baum M,Bates CM. Link between reduced nephron number and hypertension: studies in a mutant mouse modelPediatric ResearchYear: 200659448949316549517
12. Mañalich R,Reyes L,Herrera M,Melendi C,Fundora I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric studyKidney InternationalYear: 200058277077310916101
13. Hughson M,Farris AB,Douglas-Denton R,Hoy WE,Bertram JF. Glomerular number and size in autopsy kidneys: the relationship to birth weightKidney InternationalYear: 20036362113212212753298
14. Nigam SK,Aperia AC,Brenner BM. Brenner BMDevelopment and maturation of the kidneyBrenner and Rector’s The KidneyYear: 1996Philadelphia, PA, USAW.B. Saunders Company7298
15. Puddu M,Fanos V,Podda F,Zaffanello M. The kidney from prenatal to adult life: perinatal programming and reduction of number of nephrons during developmentAmerican Journal of NephrologyYear: 200930216217019339773
16. Simeoni U,Ligi I,Buffat C,Boubred F. Adverse consequences of accelerated neonatal growth: cardiovascular and renal issuesPediatric NephrologyYear: 201126449350820938692
17. Brenner BM,Garcia DL,Anderson S. Glomeruli and blood pressure. Less of one, more the other?American Journal of HypertensionYear: 1988143353473063284
18. Sanders MW,Fazzi GE,Janssen GMJ,Blanco CE,De Mey JGR. High sodium intake increases blood pressure and alters renal function in intrauterine growth-retarded ratsHypertensionYear: 2005461717515956110
19. Keller G,Zimmer G,Mall G,Ritz E,Amann K. Nephron number in patients with primary hypertensionNew England Journal of MedicineYear: 2003348210110812519920
20. Hinchliffe SA,Lynch MRJ,Sargent PH,Howard CV,Van Velzen D. The effect of intrauterine growth retardation on the development of renal nephronsBritish Journal of Obstetrics and GynaecologyYear: 19929942963011581274
21. Goodfellow J,Bellamy MF,Gorman ST,et al. Endothelial function is impaired in fit young adults of low birth weightCardiovascular ResearchYear: 199840360060610070502
22. Leeson CPM,Kattenhorn M,Morley R,Lucas A,Deanfield JE. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult lifeCirculationYear: 200110391264126811238271
23. Street ME,Seghini P,Feini S,et al. Changes in interleukin-6 and IGF system and their relationships in placenta and cord blood in newborns with fetal growth restriction compared with controlsEuropean Journal of EndocrinologyYear: 2006155456757416990656
24. Gauster M,Hiden U,Blaschitz A,et al. Dysregulation of placental endothelial lipase and lipoprotein lipase in intrauterine growth-restricted pregnanciesJournal of Clinical Endocrinology and MetabolismYear: 20079262256226317356047
25. Jarvenpaa J,Vuoristo JT,Savolainen ER,Ukkola O,Vaskivuo T,Ryynanen M. Altered expression of angiogenesis-related placental genes in pre-eclampsia associated with intrauterine growth restrictionGynecological EndocrinologyYear: 200723635135517616861
26. Thornburg KL,O’Tierney PF,Louey S. Review: the placenta is a programming agent for cardiovascular diseasePlacentaYear: 201031S54S5920149453
27. Bertram C,Trowern AR,Copin N,Jackson AA,Whorwood CB. The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11β-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in uteroEndocrinologyYear: 200114272841285311416003
28. Dagan A,Gattineni J,Cook V,Baum M. Prenatal programming of rat proximal tubule Na+/H+ exchanger by dexamethasoneAmerican Journal of PhysiologyYear: 20072923R1230R123517095646
29. Witlin AG,Sibai BM. Hypertension in pregnancy: current concepts of preeclampsiaAnnual Review of MedicineYear: 199748115127
30. Economides DL,Nicolaides KH. Blood glucose and oxygen tension levels in small-for-gestational-age fetusesAmerican Journal of Obstetrics and GynecologyYear: 198916023853892916623
31. Smith GCS. First trimester origins of fetal growth impairmentSeminars in PerinatologyYear: 2004281415015058901
32. Barker DJP,Osmond C,Golding J,Kuh D,Wadsworth MEJ. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular diseaseBritish Medical JournalYear: 198929866735645672495113
33. Olofsson P,Laurini RN,Marsal K. A high uterine artery pulsatility index reflects a defective development of placental bed spiral arteries in pregnancies complicated by hypertension and fetal growth retardationEuropean Journal of Obstetrics Gynecology and Reproductive BiologyYear: 1993493161168
34. Gluckman PD,Hanson MA,Cooper C,Thornburg KL. Effect of in utero and early-life conditions on adult health and diseaseNew England Journal of MedicineYear: 20083591673
35. Laurin J,Lingman G,Marsal K,Persson PH. Fetal blood flow in pregnancies complicated by intrauterine growth retardationObstetrics and GynecologyYear: 19876968959023554065
36. Dicke JM,Henderson GI. Placental amino acid uptake in normal and complicated pregnanciesAmerican Journal of the Medical SciencesYear: 198829532232273354595
37. Mahendran D,Donnai P,Glazier JD,D’Souza SW,Boyd RDH,Sibley CP. Amino acid (system A) transporter activity in microvillous membrane vesicles from the placentas of appropriate and small for gestational age babiesPediatric ResearchYear: 19933456616658284106
38. Glazier JD,Cetin I,Perugino G,et al. Association between the activity of the system A amino acid transporter in the microvillous plasma membrane of the human placenta and severity of fetal compromise in intrauterine growth restrictionPediatric ResearchYear: 19974245145199380446
39. Norberg S,Powell TL,Jansson T. Intrauterine growth restriction is associated with a reduced activity of placental taurine transportersPediatric ResearchYear: 19984422332389702920
40. Jansson T,Scholtbach V,Powell TL. Placental transport of leucine and lysine is reduced in intrauterine growth restrictionPediatric ResearchYear: 19984445325379773842
41. Nylund L,Lunell NO,Lewander R,Sarby B. Uteroplacental blood flow index in intrauterine growth retardation of fetal or maternal originBritish Journal of Obstetrics and GynaecologyYear: 198390116206821664
42. Müntefering H,Wysocki M,Rastorguev E,Gerein V. Placenta in gestational hypertensionPathologeYear: 200425426226815060725
43. Battistelli M,Burattini S,Pomini F,Scavo M,Caruso A,Falcieri E. Ultrastructural study on human placenta from intrauterine growth retardation casesMicroscopy Research and TechniqueYear: 200465315015815605416
44. Sahin Z,Acar N,Ozbey O,Ustunel I,Demir R. Distribution of Notch family proteins in intrauterine growth restriction and hypertension complicated human term placentasActa HistochemicaYear: 2011113327027619913284
45. Merlet-Benichou C,Gilbert T,Muffat-Joly M,Lelievre-Pegorier M,Leroy B. Intrauterine growth retardation leads to a permanent nephron deficit in the ratPediatric NephrologyYear: 1994821751808018495
46. Langley-Evans SC,Welham SJM,Jackson AA. Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the ratLife SciencesYear: 1999641196597410201645
47. Vehaskari VM,Aviles DH,Manning J. Prenatal programming of adult hypertension in the ratKidney InternationalYear: 200159123824511135076
48. Woods LL. Fetal origins of adult hypertension: a renal mechanism?Current Opinion in Nephrology and HypertensionYear: 20009441942510926179
49. Woods LL,Ingelfinger JR,Nyengaard JR,Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in ratsPediatric ResearchYear: 200149446046711264427
50. Schreuder MF,Nyengaard JR,Fodor M,Van Wijk JAE,Delemarre-Van De Waal HA. Glomerular number and function are influenced by spontaneous and induced low birth weight in ratsJournal of the American Society of NephrologyYear: 200516102913291916093454
51. Moritz KM,Wintour EM,Black MJ,Bertram JF,Caruana G. Factors influencing mammalian kidney development: implications for health in adult lifeAdvances in Anatomy, Embryology, and Cell BiologyYear: 2008196178
52. Abdel-Hakeem AK,Henry TQ,Magee TR,et al. Mechanisms of impaired nephrogenesis with fetal growth restriction: altered renal transcription and growth factor expressionAmerican Journal of Obstetrics and GynecologyYear: 20081993252.e1252.e718639218
53. Barker DJP,Hales CN,Fall CHD,Osmond C,Phipps K,Clark PMS. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growthDiabetologiaYear: 199336162678436255
54. Silver LE,Decamps PJ,Korst LM,Platt LD,Castro LC. Intrauterine growth restriction is accompanied by decreased renal volume in the human fetusAmerican Journal of Obstetrics and GynecologyYear: 200318851320132512748506
55. Schreuder MF,Van Wijk JAE,Fodor M,Delemarre-van de Waal HA. Influence of intrauterine growth restriction on renal function in the adult ratJournal of Physiology and BiochemistryYear: 200763321322018309777
56. Woods LL. Maternal nutrition and predisposition to later kidney diseaseCurrent Drug TargetsYear: 20078890691317691927
57. Ojeda NB,Grigore D,Alexander BT. Developmental programming of hypertension: insight from animal models of nutritional manipulationHypertensionYear: 2008521445018474830
58. Speth RC,Husain A. Distribution of angiotensin-converting enzyme and angiotensin II-receptor binding sites in the rat ovaryBiology of ReproductionYear: 19883836957022837296
59. Von Lutterotti N,Camargo MJF,Mueller FB,Timmermans PBMWM,Laragh JH. Angiotensin II receptor antagonist markedly reduces mortality in salt-loaded Dahl S ratsAmerican Journal of HypertensionYear: 199144346S349S1854463
60. Krebs LT,Hanesworth JM,Sardinia MF,Speth RC,Wright JW,Harding JW. A novel angiotensin analog with subnanomolar affinity for angiotensin- converting enzymeJournal of Pharmacology and Experimental TherapeuticsYear: 2000293126026710734177
61. Ojeda NB,Grigore D,Robertson EB,Alexander BT. Estrogen protects against increased blood pressure in postpubertal female growth restricted offspringHypertensionYear: 200750467968517724277
62. Ojeda NB,Grigore D,Yanes LL,et al. Testosterone contributes to marked elevations in mean arterial pressure in adult male intrauterine growth restricted offspringAmerican Journal of PhysiologyYear: 20072922R758R76316917022
63. Ojeda NB,Royals TP,Black JT,Dasinger JH,Johnson JM,Alexander BT. Enhanced sensitivity to acute angiotensin II is testosterone dependent in adult male growth-restricted offspringAmerican Journal of PhysiologyYear: 20102985R1421R142720219873
64. Grigore D,Ojeda NB,Alexander BT. Sex differences in the fetal programming of hypertensionGender MedicineYear: 200851S121S13218395678
65. de Gusmão Correia ML,Volpato AM,Aguila MB,Mandarim-de-Lacerda CA. Developmental origins of health and disease: experimental and human evidence of fetal programming for metabolic syndrome Journal of Human Hypertension. In press.
66. Liggins GC,Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infantsPediatricsYear: 19725045155254561295
67. Villar VA,Liu T,Jose PA. Recent trends in pediatric hypertension researchLe Journal Médical LibanaisYear: 2010583179184
68. Dagan A,Habib S,Gattineni J,Dwarakanath V,Baum M. Prenatal programming of rat thick ascending limb chloride transport by low-protein diet and dexamethasoneAmerican Journal of PhysiologyYear: 20092971R93R9919403862
69. Seckl JR,Cleasby M,Nyirenda MJ. Glucocorticoids, 11β-hydroxysteroid dehydrogenase, and fetal programmingKidney InternationalYear: 20005741412141710760076
70. Edwards LJ,Coulter CL,Symonds ME,McMillen IC. Prenatal undernutrition, glucocorticoids and the programming of adult hypertensionClinical and Experimental Pharmacology and PhysiologyYear: 2001281193894111703401
71. French NP,Hagan R,Evans SF,Godfrey M,Newnham JP. Repeated antenatal corticosteroids: size at birth and subsequent developmentAmerican Journal of Obstetrics and GynecologyYear: 199918011141219914589
72. Brown RW,Chapman KE,Kotelevtsev Y,et al. Cloning and production of antisera to human placental 11β-hydroxysteroid dehydrogenase type 2Biochemical JournalYear: 19963133100710178611140
73. Benediktsson R,Lindsay RS,Noble J,Seckl JR,Edwards CRW. Glucocorticoid exposure in utero: new model for adult hypertensionThe LancetYear: 19933418841339341
74. Gwathmey TM,Shaltout HA,Rose JC,Diz DI,Chappell MC. Glucocorticoid-induced fetal programming alters the functional complement of angiotensin receptor subtypes within the kidneyHypertensionYear: 201157362062621220702
75. Moritz KM,de Matteo R,Dodic M,et al. Prenatal glucocorticoid exposure in the sheep alters renal development in utero: implications for adult renal function and blood pressure controlAmerican Journal of PhysiologyYear: 20113012R500R50921593424
76. Finken MJJ,Meulenbelt I,Dekker FW,et al. The 23K variant of the R23K polymorphism in the glucocorticoid receptor gene protects against postnatal growth failure and insulin resistance after preterm birthJournal of Clinical Endocrinology and MetabolismYear: 200792124777478217848410
77. Lillycrop KA,Phillips ES,Jackson AA,Hanson MA,Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspringJournal of NutritionYear: 200513561382138615930441
78. Lillycrop KA,Slater-Jefferies JL,Hanson MA,Godfrey KM,Jackson AA,Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modificationsBritish Journal of NutritionYear: 20079761064107317433129
79. Bogdarina I,Welham S,King PJ,Burns SP,Clark AJL. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertensionCirculation ResearchYear: 2007100452052617255528
80. Bogdarina I,Haase A,Langley-Evans S,Clark AJL. Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the ratPLoS OneYear: 201052 Article ID e9237..
81. Hales CN,Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesisDiabetologiaYear: 19923575956011644236

Article Categories:
  • Review Article


Previous Document:  How can the microbiologist help in diagnosing neonatal sepsis?
Next Document:  Infection by CXCR4-Tropic Human Immunodeficiency Virus Type 1 Is Inhibited by the Cationic Cell-Pene...