Document Detail

Mechanical ventilation and intra-abdominal hypertension: 'Beyond Good and Evil'
Jump to Full Text
MedLine Citation:
PMID:  23256904     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
ABSTRACT: Intra-abdominal hypertension is frequent in surgical and medical critically ill patients. Intra-abdominal hypertension has a serious impact on the function of respiratory as well as peripheral organs. In the presence of alveolar capillary damage, which occurs in acute respiratory distress syndrome (ARDS), intra-abdominal hypertension promotes lung injury as well as edema, impedes the pulmonary lymphatic drainage, and increases intra-thoracic pressures, leading to atelectasis, airway closure, and deterioration of respiratory mechanics and gas exchange. The optimal setting of mechanical ventilation and its impact on respiratory function and hemodynamics in ARDS associated with intra-abdominal hypertension are far from being assessed. We suggest that the optimal ventilator management of patients with ARDS and intra-abdominal hypertension would include the following: (a) intra-abdominal, esophageal pressure, and hemodynamic monitoring; (b) ventilation setting with protective tidal volume, recruitment maneuver, and level of positive end-expiratory pressure set according to the 'best' compliance of the respiratory system or the lung; (c) deep sedation with or without neuromuscular paralysis in severe ARDS; and (d) open abdomen in selected patients with severe abdominal compartment syndrome.
Authors:
Paolo Pelosi; Maria Vargas
Related Documents :
8571194 - Effects of differing rates of protamine reversal of heparin anticoagulation.
3883684 - Effects of cardiopulmonary bypass and prostacyclin on plasma catecholamines, angiotensi...
11229114 - The cardiovascular and hemodynamic effects of erythropoietin in chronic renal failure.
18477074 - Effects of levosimendan on indocyanine green plasma disappearance rate and the gastric ...
6703364 - Changes in intracranial pressure and compliance during adenosine triphosphate-induced h...
20191674 - Right ventricular dysfunction in early systemic hypertension: a tissue doppler imaging ...
Publication Detail:
Type:  EDITORIAL     Date:  2012-12-18
Journal Detail:
Title:  Critical care (London, England)     Volume:  16     ISSN:  1466-609X     ISO Abbreviation:  Crit Care     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2012-12-21     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9801902     Medline TA:  Crit Care     Country:  -    
Other Details:
Languages:  ENG     Pagination:  187     Citation Subset:  -    
Affiliation:
Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, L,go R, Benzi, 8 - 16132 Genoa, Italy. ppelosi@hotmail.com.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Crit Care
Journal ID (iso-abbrev): Crit Care
ISSN: 1364-8535
ISSN: 1466-609X
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2012 BioMed Central Ltd
Print publication date: Year: 2012
Electronic publication date: Day: 18 Month: 12 Year: 2012
pmc-release publication date: Day: 18 Month: 12 Year: 2013
Volume: 16 Issue: 6
First Page: 187 Last Page: 187
PubMed Id: 23256904
ID: 3672607
Publisher Id: cc11874
DOI: 10.1186/cc11874

Mechanical ventilation and intra-abdominal hypertension: 'Beyond Good and Evil'
Paolo Pelosi1 Email: ppelosi@hotmail.com
Maria Vargas1 Email: vargas.maria82@gmail.com
1Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, L.go R. Benzi, 8 - 16132 Genoa, Italy

Those who fight monsters should take care not to become a monster himself. And if you look into an abyss, the abyss will look into you.

- 'Beyond Good and Evil: Prelude to a Philosophy of the Future', Friedrich Nietzsche

The study by Regli and colleagues [1] in the previous issue of Critical Care reports the effects of different levels of positive end-expiratory pressure (PEEP) on respiratory function and hemodynamics in an animal model of acute respiratory distress syndrome (ARDS) associated with intra-abdominal hypertension (IAH). IAH is highly prevalent in critically ill patients and has a serious impact on the function of the lungs and peripheral organs [2]. In the presence of alveolar capillary membrane damage, IAH promotes lung injury [3] as well as edema and increases intra-thoracic pressures, leading to atelectasis, airway closure, and deterioration of gas exchange [4].

Regli and colleagues [1] reported an increase of end-expiratory lung volume and gas exchange, with a reduction of pulmonary shunt and dead space fraction when intra-abdominal pressure (IAP)-matching PEEP was applied. Although high IAP-matching PEEP decreased cardiac output, moderate IAP-matching PEEP provided a compromise between lung function and hemodynamics. In an experimental model of IAH in normal animals, the same authors showed that PEEP level matched to IAP did not improve oxygenation but reduced cardiac output [5].

The optimal setting of mechanical ventilation in ARDS with IAH has not been assessed yet. As a consequence, the hemodynamics and respiratory effects of mechanical ventilation in these patients cannot be predicted.

A protective ventilation strategy with a low tidal volume (6 mL/kg ideal body weight) and an airway plateau pressure of below 30 cm H2O improves survival in patients with ARDS [6]. On the other hand, low tidal volume may lead to alveolar de-recruitment in the presence of ARDS associated with IAH. The effect of tidal volume in IAH depends on the degree of inspiratory trans-pulmonary pressure that is usually reduced because of cephalic shift of the diaphragm. Recently, Santos and colleagues [3] showed that, in extra-pulmonary ARDS with IAH, high tidal volume (10 mL/kg ideal body weight) decreased atelectasis and inflammatory response of the lung tissue and improved oxygenation by increasing end-inspiratory trans-pulmonary pressure.

Recruitment maneuvers in patients with ARDS may have a beneficial effect on the respiratory function [7]. In the presence of IAH and increased chest wall elastance, the inspiratory pressure of the respiratory system applied during recruitment maneuver should be higher than usually applied, in order to achieve an inspiratory trans-pulmonary pressure that is large enough enough to reopen collapsed alveoli.

The study by Regli and colleagues [1] shows that the PEEP setting based simply on IAP could have a negative impact on hemodynamics. Previous clinical studies reported different results on the role of PEEP in ARDS patients with IAH. Krebs and colleagues [8] showed similar beneficial effects of PEEP on gas exchange and alveolar recruitment in ARDS patients with or without IAH. Gattinoni and colleagues [9] showed that the effects of PEEP on alveolar recruitment were more beneficial in patients with extra-pulmonary as compared with pulmonary ARDS. However, independently of IAH, both studies found that the 'optimal' PEEP should be selected according to the 'best' elastance of the respiratory system and the lung. Higher PEEP in the presence of IAH markedly increases pleural pressure, negatively affecting cardiovascular function [10] and impeding the lymphatic drainage [11]. It is likely that, in cases in which higher PEEP levels are required, the open abdomen might be considered, according to patient's clinical condition [12]. The prophylactic use of the open abdomen technique should be reserved for surgical patients with a high risk of abdominal compartment syndrome and death [13].

In patients with severe ARDS and IAH, the prone position could be used to reduce the cranial diaphragmatic load [14], even if prone positioning may induce a mild elevation in IAP or ameliorate or exacerbate IAH [15] and may be difficult to apply in patients with transiently open abdomen treatment. Finally, experimental evidence suggests that assisted ventilation should be cautiously applied in the presence of mild or severe ARDS associated with IAH [12].

In conclusion, we suggest that the optimal ventilator management of patients with ARDS and IAH would include the following: (a) intra-abdominal, esophageal pressure, and hemodynamic monitoring; (b) ventilation setting with protective tidal volume, recruitment maneuvers, and PEEP level set according to the 'best' compliance of the respiratory system or the lung; (c) deep sedation with or without neuromuscular paralysis in severe ARDS; and (d) open abdomen in selected patients with severe abdominal compartment syndrome.


Abbreviations

ARDS: acute respiratory distress syndrome; IAH: intra-abdominal hypertension; IAP: intra-abdominal pressure; PEEP: positive end-expiratory pressure.


Competing interests

The authors declare that they have no competing interests.


References
Regli A,Mahendran R,Fysh ET,Roberts B,Noffsinger B,De Keulenar BL,Singh B,Van Heerden PV,Matching positive end-expiratory pressure to intra-abdominal pressure improves oxygenation in a porcine sick lung model of intra-abdominal pressureCrit CareYear: 201216R20810.1186/cc1184023098278
Malbrain ML,Chiumello D,Pelosi P,Bihari D,Innes R,Ranieri VM,Del Turco M,Wilmer A,Brienza N,Malcangi V,Cohen J,Japiassu A,De Keulenaer BL,Daelemans R,Jacquet L,Laterre PF,Frank G,de Souza P,Cesana B,Gattinoni L,Incidence and prognosis of intra-abdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological studyCrit Care MedYear: 20051631532210.1097/01.CCM.0000153408.09806.1B15699833
Santos CL,Moraes L,Santos RS,Oliveira MG,Silva JD,Maron-Gutierrez T,Ornellas DS,Morales MM,Capelozzi VL,Jamel N,Pelosi P,Rocco PR,Garcia CS,Effects of different tidal volume in pulmonary and extrapulmonary lung injury with or without intrabdominal hypertensionIntensive Care MedYear: 20121649950810.1007/s00134-011-2451-622234736
Quintel M,Pelosi P,Caironi P,Meinhardt JP,Luecke T,Herrmann P,Taccone P,Rylander C,Valenza F,Carlesso E,Gattinoni L,An increase of abdominal pressure increases pulmonary edema in oleic acid-induced lung injuryAm J Respir Crit Care MedYear: 20041653454114670801
Regli A,Chakera J,De Keulenaer BL,Roberts B,Noffsinger B,Singh B,Van Heerden PV,Matching positive end-expiratory pressure to intra-abdominal pressure prevents end-expiratory lung volume decline in a pig model of intra-abdominal pressureCrit Care MedYear: 2012161879188610.1097/CCM.0b013e31824e0e8022488004
Putensen C,Theuerkauf N,Zinserling J,Wrigge H,Pelosi P,Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injuryAnn Intern MedYear: 20091656657619841457
Pelosi P,Gama de Abreu M,Rocco PR,New and conventional strategies for lung recruitment in acute respiratory distress syndromeCrit CareYear: 20101621010.1186/cc885120236454
Krebs J,Pelosi P,Tsagogiorgas C,Zoeller L,Rocco PM,Yard B,Luecke T,Open lung approach associated with high-frequency oscillatory or low tidal volume mechanical ventilation improves respiratory function and minimizes lung injury in healthy and injured ratsCrit CareYear: 201016R18310.1186/cc929120946631
Gattinoni L,Pelosi P,Suter PM,Pedoto A,Vercesi P,Lissoni A,Acute respiratory distress syndrome caused by pulmonary and extra-pulmonary disease. Different syndromes?Am J Respir Crit Care MedYear: 1998163119655699
Staffieri F,Stripoli T,De Monte V,Crovace A,Sacchi M,De Michele M,Terragni PP,Ranieri VM,Grasso S,Physiological effects of an open lung ventilator strategy titrated on elastance-derived end-expiratory trans-pulmonary pressure: study in a pig modelCrit Care MedYear: 2012162124213110.1097/CCM.0b013e31824e1b6522564955
Hederstierna G,Lattuada M,Lymphatics and lymph in acute lung injuryCurr Opin Crit CareYear: 200816313610.1097/MCC.0b013e3282f2f4b518195623
Pelosi P,Luecke T,Rocco PR,Chest wall mechanics and abdominal pressure during general anaesthesia in normal and obese individuals and in acute lung injuryCurr Opin Crit CareYear: 201116727910.1097/MCC.0b013e328342721321150585
Mentula P,Leppaniemi A,Prophylactic open abdomen in patients with postoperative intra-abdominal hypertensionCrit CareYear: 20101611111310.1186/cc820720156323
Abroug F,Ouanes-Besbes L,Dachraoui F,Brochard L,An updated study-level meta-analysis of randomized controlled trials on proning in ARDS and acute lung injuryCrit CareYear: 201116R610.1186/cc940321211010
Kirkpatrick AW,Pelosi P,De Waele JJ,Malbrain ML,Ball CG,Meade MO,Stelfox HT,Laupland KB,Clinical review: intra-abdominal hypertension: does it influence the physiology of prone ventilation?Crit CareYear: 20101623224320804560

Article Categories:
  • Commentary


Previous Document:  MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genom...
Next Document:  CAPER: a Chromosome-Assembled human Proteome browsER.