Document Detail

MRCI study on electronic spectrum of 13 electronic states of SiP molecule.
MedLine Citation:
PMID:  22842348     Owner:  NLM     Status:  Publisher    
The potential energy curves (PECs) of the X(2)Π, A(2)Σ(+), a(4)Σ(+), B(2)Π, c(4)Δ, C(2)Σ(+), d(4)Σ(-), D(2)Φ, E(2)Σ(-), G(2)Δ, H(2)Π, I(2)Σ(+) and f(4)Δ electronic states of the SiP molecule are calculated employing an ab initio quantum chemical method. The PEC calculations are performed for internuclear separations from 0.10 to 1.10nm using the complete active space self-consistent field (CASSCF) method, which is followed by the internally contracted multireference configuration interaction (MRCI) approach in combination with a correlation-consistent aug-cc-pV6Z basis set. To improve the quality of the PECs, core-valence correlation and scalar relativistic corrections are included. Scalar relativistic correction calculations are carried out using the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. Core-valence correlation corrections are included using a cc-pCVQZ basis set. The PECs obtained by the MRCI calculations are corrected for size-extensivity errors by means of the Davidson modification. The PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are obtained by fitting the vibrational levels, which are calculated by solving the ro-vibrational Schrödinger equation. The spectroscopic results are compared in detail with those reported in previous literature. Excellent agreement is found between the present spectroscopic results and the experimental ones. Using the Breit-Pauli operator, the spin-orbit (SO) coupling effect on the spectroscopic parameters is included in the X(2)Π, D(2)Φ and H(2)Π electronic states at the level of a cc-pCVTZ basis set. The energy separation of the X(2)Π and A(2)Σ(+) electronic states is accurately determined by including the Davidson modification, SO coupling and core-valence correlation and scalar relativistic corrections. Using the PECs determined by the MRCI+Q/CV+DK+56 calculations, the G(υ), B(υ) and D(υ) are calculated for each vibrational state of each electronic state, and those of the first 20 vibrational states are reported for each electronic state of the non-rotation (29)Si(31)P molecule. Comparison with the measurements demonstrates that the present results are accurate. The spectroscopic parameters of the a(4)Σ(+), B(2)Π, c(4)Δ, d(4)Σ(-), D(2)Φ, E(2)Σ(-), G(2)Δ, H(2)Π, I(2)Σ(+) and f(4)Δ electronic states and the G(υ), B(υ) and D(υ) of all the electronic states obtained here are expected to be reliable predicted results.
Deheng Shi; Wei Xing; Hui Liu; Jinfeng Sun; Zunlue Zhu
Related Documents :
24609018 - Understanding the adsorption of cupc and znpc on noble metal surfaces by combining quan...
23918338 - Immunocytochemistry, electron tomography, and energy dispersive x-ray spectroscopy (edx...
22685568 - An approach to enhance the conservation-compatibility of solar energy development.
23758608 - Strain-induced pseudo-heterostructure nanowires confining carriers at room temperature ...
17315918 - A lattice protein with an amyloidogenic latent state: stability and folding kinetics.
22942698 - Investigation of spectroscopic properties and spin-orbit splitting in the x(2)Π and a(...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-6-30
Journal Detail:
Title:  Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy     Volume:  97C     ISSN:  1873-3557     ISO Abbreviation:  -     Publication Date:  2012 Jun 
Date Detail:
Created Date:  2012-7-30     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9602533     Medline TA:  Spectrochim Acta A Mol Biomol Spectrosc     Country:  -    
Other Details:
Languages:  ENG     Pagination:  536-545     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Elsevier B.V. All rights reserved.
College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Study of high-pressure Raman intensity behavior of aromatic hydrocarbons: Benzene, biphenyl and naph...
Next Document:  Synthesis, materials characterization and opto(electrical) properties of unsymmetrical azomethines w...