Document Detail

MMP-15 is upregulated in preeclampsia, but does not cleave endoglin to produce soluble endoglin.
Jump to Full Text
MedLine Citation:
PMID:  22768148     Owner:  NLM     Status:  MEDLINE    
Preeclampsia is a major pregnancy complication, characterized by severe endothelial dysfunction, hypertension and maternal end-organ damage. Soluble endoglin is an anti-angiogenic protein released from placenta and thought to play a central role in causing the endothelial dysfunction and maternal organ injury seen in severe preeclampsia. We recently reported MMP-14 was the protease producing placentally-derived soluble endoglin by cleaving full-length endoglin present on the syncytiotrophoblast surface. This find identifies a specific drug target for severe preeclampsia; interfering with MMP-14 mediated cleavage of endoglin could decrease soluble endoglin production, ameliorating clinical disease. However, experimental MMP-14 inhibition alone only partially repressed soluble endoglin production, implying other proteases might have a role in producing soluble endoglin. Here we investigated whether MMP-15--phylogenetically the closest MMP relative to MMP-14 with 66% sequence similarity--also cleaves endoglin to produce soluble endoglin. MMP-15 was localized to the syncytiotrophoblast layer of the placenta, the same site where endoglin was localized. Interestingly, it was significantly (p = 0.03) up-regulated in placentas from severe early-onset preeclamptic pregnancies (n = 8) compared to gestationally matched preterm controls (n = 8). However, siRNA knockdown of MMP-15 yielded no significant decrease of soluble endoglin production from either HUVECs or syncytialised BeWo cells in vitro. Importantly, concurrent siRNA knockdown of both MMP-14 and MMP-15 in HUVECS did not yield further decrease in soluble endoglin production compared to MMP-14 siRNA alone. We conclude MMP-15 is up-regulated in preeclampsia, but does not cleave endoglin to produce soluble endoglin.
Tu'uhevaha J Kaitu'u-Lino; Kirsten Palmer; Laura Tuohey; Louie Ye; Stephen Tong
Related Documents :
10027138 - Pulmonary embolism during labor and the effect on the fetus monitored with oxycardiotoc...
7932988 - Anatomic and sonographic features of the fetal skull.
10717828 - Acog practice bulletin. antepartum fetal surveillance. number 9, october 1999 (replaces...
16325668 - Prenatal diagnosis of fetal arrhythmias.
22826448 - Atlantic dip: closing the loop: a change in clinical practice can improve outcomes for ...
10659508 - Port-wine-stain (nevus flammeus), congenital becker's nevus, café-au-lait-macule and l...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2012-06-29
Journal Detail:
Title:  PloS one     Volume:  7     ISSN:  1932-6203     ISO Abbreviation:  PLoS ONE     Publication Date:  2012  
Date Detail:
Created Date:  2012-07-06     Completed Date:  2012-11-27     Revised Date:  2013-07-12    
Medline Journal Info:
Nlm Unique ID:  101285081     Medline TA:  PLoS One     Country:  United States    
Other Details:
Languages:  eng     Pagination:  e39864     Citation Subset:  IM    
The Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Antigens, CD / metabolism*
Cohort Studies
Gene Knockdown Techniques
Human Umbilical Vein Endothelial Cells
Matrix Metalloproteinase 15 / deficiency,  genetics,  metabolism*
Pre-Eclampsia / enzymology,  genetics,  pathology
Protein Transport
Receptors, Cell Surface / metabolism*
Trophoblasts / enzymology,  pathology
Reg. No./Substance:
0/Antigens, CD; 0/ENG protein, human; 0/MMP15 protein, human; 0/Receptors, Cell Surface; EC 3.4.24.-/Matrix Metalloproteinase 15

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): PLoS One
Journal ID (iso-abbrev): PLoS ONE
Journal ID (publisher-id): plos
Journal ID (pmc): plosone
ISSN: 1932-6203
Publisher: Public Library of Science, San Francisco, USA
Article Information
Download PDF
Kaitu’u-Lino et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Received Day: 23 Month: 1 Year: 2012
Accepted Day: 28 Month: 5 Year: 2012
collection publication date: Year: 2012
Electronic publication date: Day: 29 Month: 6 Year: 2012
Volume: 7 Issue: 6
E-location ID: e39864
ID: 3387233
PubMed Id: 22768148
Publisher Id: PONE-D-12-02661
DOI: 10.1371/journal.pone.0039864

MMP-15 Is Upregulated in Preeclampsia, but Does Not Cleave Endoglin to Produce Soluble Endoglin Alternate Title:MMP-15 Does Not Cleave Endoglin in Preeclampsia
Tu’uhevaha J. Kaitu’u-Linoaff1*
Kirsten Palmeraff1
Laura Tuoheyaff1
Louie Yeaff1
Stephen Tongaff1
Ana Claudia Zenclussenedit1 Role: Editor
The Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
Otto-von-Guericke University Magdeburg Medical Faculty, Germany
Correspondence: * E-mail:
Contributed by footnote: Conceived and designed the experiments: TK KP ST. Performed the experiments: TK KP LT LY. Analyzed the data: TK KP LT LY ST. Contributed reagents/materials/analysis tools: TK KP ST. Wrote the paper: TK KP ST.


Preeclampsia affects 3–5% of pregnancies and is a leading cause of maternal and perinatal mortality and morbidity. [1], [2] Delivery of the baby and placenta is the only current cure; however if the pregnancy is considerably preterm, this inflicts severe prematurity on the baby.

A significant advance in the understanding of its pathogenesis was made with the characterization of two anti-angiogenic proteins - soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng) - as the likely factors released from preeclamptic placentas causing endothelial dysfunction and maternal organ injury. Both are significantly up-regulated in the sera of women with preeclampsia with levels correlating with clinical disease severity. Adenoviral administration of sFlt-1 to rats induces hypertension and proteinuria, hallmarks of preeclampsia. Importantly, co-administration of both sFlt-1 and sEng to rats recapitulates the full spectrum of end-organ injury seen in severe preeclampsia (severe proteinuria, low platelets, deranged liver function tests and cerebral oedema). [3], [4], [5].

The characterisation of these two anti-angiogenic factors in preeclampsia is significant as they represent targets to develop therapeutics. A drug that either decreases the production or biological activity of either factor could possibly quench the disease. If developed, such a drug would be an important advance in the management of this disease.

Full-length membrane bound endoglin is a co-receptor for transforming growth factor-β (TGF-β), and is highly expressed on both endothelial cells and the syncytiotrophoblast. [6] MMP-14, also known as MT1-MMP is one of six membrane-type MMPs, and has been widely studied for its role in cancer progression and metastasis. [7], [8], [9], [10] Through over-expression systems in COS-7 cells, Hawinkels et al showed MMP-14 was the cleavage protease of membrane bound endoglin, producing soluble endoglin that is then released. [11] Through mutagenesis experiments, they mapped the cleavage point on membrane bound endoglin to a specific glycine-leucine point near the transmembrane domain region.

We subsequently reported MMP-14 was highly expressed in placenta, co-localised with endoglin, and cleaves endoglin to produce soluble endoglin in placental cells [12]. Our data strongly suggests membrane bound MMP-14 was responsible for producing soluble endoglin in preeclampsia.

However, we noted inhibition of MMP-14 only partially repressed soluble endoglin production (∼50%), implying other protease(s) might also have a role in soluble endoglin production. We have therefore sought to characterise these other proteases and identified MMP-15 as a strong candidate for the following reasons: 1) it is phylogenetically the most closely related to MMP-14 of all MMPs with 66% homology at the catalytic domains [13], 2) in silico analysis of MMP15 suggests it is expressed >30 fold expression in placenta relative to average expression in other tissues [14], 3) it has an interchangeable role with MMP-14 in facilitating placental development in mice, implying shared roles in placental biology [15]. Therefore, we examined the expression of MMP-15 in preeclamptic placentas, localized its expression, and investigated whether it cleaves endoglin to produce soluble endoglin.

Materials and Methods
Tissue Collection

Women presenting to two tertiary women’s hospitals in Melbourne, Australia, between 2008–2009 gave informed written consent for placental tissue collection. Placenta was obtained from preterm pregnancies not complicated by preeclampsia (n = 8) and those complicated by severe early-onset preeclampsia (n = 8). Severe preeclamptics were diagnosed in accordance with ACOG guidelines and included the presence of hypertension >160/110 on two occasions greater than 6 hours apart, proteinuria >5 g/day, oliguria <500 ml/day, visual disturbance, pulmonary oedema, right upper quadrant pain, abnormal liver function, thrombocytopenia or fetal growth restriction [16]. In addition, all samples were obtained from cases of early-onset preterm pre-eclampsia, defined as requiring delivery <34 weeks gestation. Pre-term control placentas were selected from women presenting with pre-term rupture of membranes or spontaneous preterm labor without evidence of infection (histopathological examination of the placentas), hypertensive disease or maternal co-morbidities. Patient characteristics are outlined in table 1.

Placental tissue was obtained immediately following delivery. Placental tissue (excluding fetal membranes) was removed and washed briefly in sterile phosphate-buffered saline (PBS). Samples for protein extraction were frozen within 15 minutes of delivery and stored at −80°C. A portion of each placenta was also fixed in 10% buffered formalin for histology.

Human Ethics approval was obtained for this study from both the Southern Health Human Research Ethics Committee and the Mercy Health Human Research Ethics Committee.

Western Blot Analysis and ELISAs

20 µg of placental lysates were separated on 10% polyacrylamide gels with wet transfer to PVDF membranes (Millipore, Billerica, MA). Membranes were blocked prior to blotting overnight with an antibody targeting MMP-15 (1∶1000, Millipore, Billerica, MA) or GAPDH (1∶5000, Cell Signalling Technology, Danvers, MA). Membranes were then visualized using an enhanced chemiluminescence detection system (Santa Cruz Biotechnology) and ChemiDoc XRS (BioRad, Hercules, CA). GAPDH was used as a loading control. Relative densitometry was determined using Image Lab (BioRad).

Soluble endoglin levels were measured in conditioned culture media using the human endoglin ELISA (R&D systems according to manufacturer’s instructions. Optical density was determined using a BioRad X-Mark microplate spectrophotometer (BioRad) and endoglin levels determined using BioRad Microplate manager 6 software.


Endoglin and MMP-15 immunhistochemistry was conducted on placental tissue collected from either pre-eclamptic or pre-term control pregnancies. Paraffin sections (5 µm) of formalin-fixed tissues were dewaxed in Xylene and rehydrated through descending grades of ethanol. Sections were then heated for 20 min on defrost in a 700-W microwave, followed by cooling to room temperature (RT) for 30 mins. They were washed for 10 min in Phosphate-buffered saline pH 7.6 (PBS), and immersed in 3% H2O2 in methanol for 10 min at RT. Sections were then washed with PBS, before immersion into Dako blocking buffer (DAKO) for 10 mins and incubated for 1 h at RT with mouse anti human MMP-15 (R&D systems, MN, USA) at 25 µg/ml in 1%BSA/PBS. For Isotype controls, primary antibody was substituted with mouse IgG. The SuperPicTure kit (Invitrogen, Carlsbad, CA) was the applied according to manufacturer’s instructions to reveal the MMP-15 staining. Sections were lightly counterstained with Harris hematoxylin (Accustain; Sigma Diagnostics, Castle Hill, NSW, Australia), dehydrated, and mounted using DPX mounting medium (BDH Laboratory Supplies, Poole, England). For co-localisation studies, serial sections (2 µm) were stained in the same manner as described above.

siRNA Knockdown of MMP-14 and MMP-15 in vitro

For siRNA experiments, both human umbilical vein endothelial cells (HUVEC – cell line) and syncytialised BeWo cells were used. HUVECs were transfected with either 10 nM MMP-14 siRNA (Qiagen), MMP-15 siRNA (Qiagen), combined MMP-14+ MMP-15 siRNA, negative control siRNA (Qiagen) or transfection reagent alone (Lipofectamine RNAiMAX, Invitrogen). Treatments were applied for 48 h before media was changed and collected 24 h later for endoglin ELISA and cell lysates were collected for mRNA extraction.

BeWo cells were first syncytialised with 20 uM forskolin and left for 48 h. Thereafter they were treated with 40 nM siRNAs as described for HUVECs above. Treatments were applied for 48 h before media was collected for endoglin ELISA and cell lysates were collected for mRNA extraction. All experiments were repeated a minimum of 3 times with at least 4 replicates per treatment.


To assess the efficiency of siRNA knockdown, RNA was extracted from HUVEC or BeWo lysates using RNeasy mini kit (Qiagen, Valencia, CA). 0.2 µg of RNA was then converted to cDNA using SuperScript III (Invitrogen) and random hexamers (Invitrogen) as per manufacturers guidelines. Taqman gene expression assays for MMP-14, MMP-15 and GAPDH were used (Applied Biosystems, Carlsbad, CA). RT-PCR was performed on the CFX 384 (Biorad, Hercules, CA) using FAM-labelled Taqman universal PCR mastermix (Applied Biosystems) with the following run conditions: 50°C for 2 minutes; 95°C for 10 mins; 95°C for 15 seconds and 60°C for 1 minute (40 cycles). PCR product was confirmed by gel electrophoresis. Relative quantification was determined using the comparative CT method.

Statistical Analysis

Continuous variables were compared using either an unpaired t-test to assess parametric data or a Mann Whitney U for non-parametric data. Categorical values were compared using the Chi-squared test. P≤0.05 was considered significant. All statistical analysis was undertaken using GraphPad Prism (GraphPad Software, La Jolla, CA).

MMP-15 is Localized to the Syncytiotrophoblast and Up-regulated in Preeclampsia

We first examined expression of MMP-15 in severe, preterm pre-eclamptic placentas and preterm controls. Given soluble endoglin has been implicated in severe preeclampsia, we only examined placentas obtained from cases of very severe disease. Thus, in our entire preeclamptic cohort, iatrogenic preterm delivery was required (<34 weeks gestation) for maternal or fetal indications. The preterm controls were cases of either spontaneous onset of labour or premature rupture of membranes where there was no evidence of maternal infection or hypertensive disease. All samples were collected by caesarean section.

We first assessed endoglin by immunohistochemistry and confirmed it was localized to the syncytiotrophoblast in both pre-eclamptic and pre-term placenta (Figure 1 A, B), consistent with our previous report [12]. We then stained MMP-15 by immunohistochemistry and also found that it localized to the syncytiotrophoblast in both pre-eclamptic and pre-term placenta (Figure 1 D, E). Importantly, immunohistochemistry for MMP-15 and endoglin on serially sectioned placenta indicated co-localisation of the two proteins within the syncytiotrophoblast layer (Figure 1G,H).

Next, we measured expression of MMP-15 in placenta from women with severe early-onset preeclampsia (n = 8) and gestationally matched preterm controls (n = 8). Western analysis showed MMP-15 was increased in preeclamptic placentas compared to preterm controls (Figure 1I,J; p = 0.03).

MMP-15 Knockdown does not Reduce soluble Endoglin Production by HUVECs or Syncytialised BeWos

We next investigated whether inhibiting MMP-15 using siRNAs would decrease soluble endoglin production in vitro using syncytialised BeWos. This cell line best models the syncytiotrophoblast, and we have previously screened a number of placental cell lines and found syncytialised Bewos to be the highest producer of soluble endoglin [12].

Of all tissues in the body, endoglin is most highly expressed in placenta and endothelial cells [14]. Therefore, we also examined the effects of MMP-15 inhibition in HUVECs where we also knocked down MMP-14.

We first confirmed siMMP-14, 15, alone, or 14 and 15 in combination resulted in >85% knockdown compared to negative siRNA in HUVEC cells. In syncytialised BeWos MMP-14 siRNA yielded a mean mRNA knockdown of 35.5±3.9%, whilst MMP-15 siRNA yielded a 77.4±4.2% knockdown compared to negative siRNA. Similar knockdown efficiency was observed when both siRNAs were added in combination.

In HUVEC cells, MMP-14 siRNA significantly decreased sEng by 61±5.5% (p<0.0001 compared to non-targeting siRNA controls), MMP-14 and MMP-15 siRNA in combination induced a 42±4.9% decrease in sEng (p<0.0001), whilst MMP-15 siRNA alone caused no significant change in sEng compared to negative siRNA (Figure 2A). In syncytialised BeWo cells, MMP-14 siRNA significantly (p<0.05) decreased sEng by 18.5±1.0% when transfected alone, whilst combination MMP14+ MMP15 siRNA significantly reduced (p<0.05) sEng production by 22.1±2.6%. No significant change in sEng levels was detected following MMP-15 knockdown alone (Figure 2B). Together these data indicate that MMP-15 does not cleave endoglin to produce soluble endoglin in either endothelial or placental cells, the two tissues types that exhibit the highest expression of endoglin of all tissues in the body.


We recently demonstrated that MMP-14 is the cleavage protease responsible for soluble endoglin release from placenta. However, in those functional studies where we used placental cells and both in vitro and in vivo models, we were only able to partially decrease sEng release. This suggested other unidentified proteases might also have a role in producing this anti-angiogenic factor.

We therefore undertook this current study to examine whether MMP-15 might be such a protease given its homology to MMP-14 [13], its high placental expression [17] and the fact that both MMP-14 and 15 have recently been shown to have interchangeable roles for placental labyrinth formation and development in mice [15]. In that study where knock-out mice were used, MMP-15 was able to entirely compensate for the absence of MMP-14 with severe phenotypic effects only observed when both were deleted.

The MMP family consists of 24 zinc-dependent endopeptidases. MMP-15, is one of six membrane-type MMPs, which are further classified based upon their cell surface association: MT1, 2, 3 and 5 (also known as MMP-14, 15, 16 and 24) have a transmembrane domain, whilst MT4 and 6 (also known as MMP-17 and MMP-25) are glycophosphatidylinositol anchored. [7], [8], [9], [10].

MMP-15 is expressed in a variety of human tissues including leukocytes, endothelial cells, hepatocytes and placenta [17], [18], [19], [20]. It cleaves gelatin and can degrade a wide range of extracellular matrix molecules including fibronectin and aggrecan [21]. Like MMP-14, MMP-15 has been most widely studied for its role in cancer progression and metastasis, primarily through its capacity to cleave and activate MMP-2 [22], [23], [24]. In this study we have shown MMP-15 is localized to the syncytiotrophoblast and is up-regulated in preeclamptic placentas. We can only speculate on the possible role, if any, that MMP-15 may play in the pathogenesis of preeclampsia. It may be possible that aberrant up-regulation of MMP-15 in preeclampsia may be responsible for the activation of MMP-2, which has also been reported to be upregulated in pre-eclampsia and may contribute to endothelial dysfunction [25].

However, our functional studies suggest MMP-15 is not involved the production of soluble endoglin from either placental or endothelial cells. In both BeWo and HUVEC cells MMP-15 targeted siRNA knockdown produced no significant decline in sEng production compared to control siRNA. Concurrent knockdown of both MMP-14 and 15 did not reduce sEng significantly more than MMP-14 silencing alone. The fact sEng continues to be produced both in this series of experiments and in our previous report that focused on MMP-14 [12] suggests a further mechanism of sEng production exists and awaits characterization.


Competing Interests: The authors have declared that no competing interests exist.

Funding: This study was supported by the Victorian Government's Operational Infrastructure Support Program. The National Health and Medical Research Council of Australia provided salary support (#490970 to S.T.; #490995 to T.K.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

We thank the women who kindly donated their placental tissues used in this work.

1. Powe CE,Levine RJ,Karumanchi SA. Year: 2011Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease.Circulation1232856286921690502
2. Sibai B,Dekker G,Kupferminc M. Year: 2005Pre-eclampsia.Lancet36578579915733721
3. Maynard S,Min JY,Merchan J,Lim KH,Li J,et al. Year: 2003Excess placental soluble fms-like tyrosine kinase 1 (sFlt-1) may contribute to endothelial dysfunction, hypertension, and proteinuria in pre-eclampsia.The Journal of Clinical Investigation11164965812618519
4. Maynard SE,Karumanchi SA. Year: 2011Angiogenic factors and preeclampsia.Semin Nephrol31334621266263
5. Venkatesha S,Toporsian M,Lam C,Hanai J,Mammoto T,et al. Year: 2006Soluble endoglin contributes to the pathogenesis of preeclampsia.Nat Med1264264916751767
6. Gougos A,St Jacques S,Greaves A,O'Connell PJ,d'Apice AJ,et al. Year: 1992Identification of distinct epitopes of endoglin, an RGD-containing glycoprotein of endothelial cells, leukemic cells, and syncytiotrophoblasts.Int Immunol483921371694
7. Devy L,Huang L,Naa L,Yanamandra N,Pieters H,et al. Year: 2009Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis.Cancer Res691517152619208838
8. Perentes JY,Kirkpatrick ND,Nagano S,Smith EY,Shaver CM,et al. Year: 2011Cancer cell-associated MT1-MMP promotes blood vessel invasion and distant metastasis in triple-negative mammary tumors.Cancer Res714527453821571860
9. Rozanov DV,Savinov AY,Williams R,Liu K,Golubkov VS,et al. Year: 2008Molecular signature of MT1-MMP: transactivation of the downstream universal gene network in cancer.Cancer Res684086409618519667
10. Sabbota AL,Kim HR,Zhe X,Fridman R,Bonfil RD,et al. Year: 2010Shedding of RANKL by tumor-associated MT1-MMP activates Src-dependent prostate cancer cell migration.Cancer Res705558556620551048
11. Hawinkels LJ,Kuiper P,Wiercinska E,Verspaget HW,Liu Z,et al. Year: 2010Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis.Cancer Res704141415020424116
12. Kaitu'u-Lino TJ,Palmer KR,Whitehead CL,Williams E,Lappas M,et al. Year: 2012MMP-14 is expressed in preeclamptic placentas and mediates release of soluble endoglin.Am J Pathol In press
13. Takino T,Sato H,Shinagawa A,Seiki M. Year: 1995Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family.J Biol Chem27023013230207559440
14. BioGPSYear: 2012Gene Portal editor..
15. Szabova L,Son MY,Shi J,Sramko M,Yamada SS,et al. Year: 2011Membrane-type MMPs are indispensable for placental labyrinth formation and development.Blood1165752576120858856
16. ACOGYear: 2002Diagnosis and Management of Pre-eclampsia and Eclampsia. ACOG Practice Bulletin No. 33.Obstet Gynecol9915916716175681
17. Bjorn SF,Hastrup N,Larsen JF,Lund LR,Pyke C. Year: 2000Messenger RNA for membrane-type 2 matrix metalloproteinase, MT2-MMP, is expressed in human placenta of first trimester.Placenta2117017610736239
18. Bar-Or A,Nuttall RK,Duddy M,Alter A,Kim HJ,et al. Year: 2003Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis.Brain1262738274914506071
19. Lafleur MA,Handsley MM,Knauper V,Murphy G,Edwards DR. Year: 2002Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs).J Cell Sci1153427343812154073
20. Theret N,Musso O,L'Helgoualc'h A,Campion JP,Clement B. Year: 1998Differential expression and origin of membrane-type 1 and 2 matrix metalloproteinases (MT-MMPs) in association with MMP2 activation in injured human livers.Am J Pathol1539459549736043
21. d'Ortho MP,Will H,Atkinson S,Butler G,Messent A,et al. Year: 1997Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases.Eur J Biochem2507517579461298
22. Nakada M,Nakamura H,Ikeda E,Fujimoto N,Yamashita J,et al. Year: 1999Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors.Am J Pathol15441742810027400
23. Ohnishi Y,Tajima S,Ishibashi A. Year: 2001Coordinate expression of membrane type-matrix metalloproteinases-2 and 3 (MT2-MMP and MT3-MMP) and matrix metalloproteinase-2 (MMP-2) in primary and metastatic melanoma cells.Eur J Dermatol1142042311525948
24. Sato H,Okada Y,Seiki M. Year: 1997Membrane-type matrix metalloproteinases (MT-MMPs) in cell invasion.Thromb Haemost784975009198203
25. Myers JE,Merchant SJ,Macleod M,Mires GJ,Baker PN,et al. Year: 2005MMP-2 levels are elevated in the plasma of women who subsequently develop preeclampsia.Hypertens Pregnancy2410311516036395


[Figure ID: pone-0039864-g001]
doi: 10.1371/journal.pone.0039864.g001.
Figure 1  MMP-15 is localised to the syncytiotrophoblast and up-regulated in preeclamptic placenta.

Representative immunohistochemistry for endoglin (A, B) and MMP-15 (D, E), shows both proteins localize to the syncytiotrophoblast in pre-eclamptic (A, D) and pre-term control (B, E) placentas. Immunohistochemistry on serial sections (2 µm) of placenta revealed co-localisation of endoglin (G) and MMP-15 (H) to the syncytiotrophoblast. No staining was observed in isotype controls (C, F). Densitometric analysis of western blots for MMP-15 (I, J) revealed a significant increase in preeclamptic placentas (n = 8) compared to pre-term controls (n = 8). *p≤0.05.

[Figure ID: pone-0039864-g002]
doi: 10.1371/journal.pone.0039864.g002.
Figure 2  MMP-15 inhibtion does not decrease soluble endoglin production in vitro.

Treatment of HUVEC cells (A) and syncytialised BeWo cells (B) with MMP-14 siRNA alone or in combination with MMP-15 siRNA induced a significant decline in sEng production compared to scrambled siRNA, whilst MMP-15 siRNA alone had no effect. Data shown as mean±SEM, n = 3 experiments, *p≤0.05.

[TableWrap ID: pone-0039864-t001] doi: 10.1371/journal.pone.0039864.t001.
Table 1  Clinical Characteristics of the preeclamptic cohort.
Preterm Control (n = 8) Preeclampsia (n = 8)
Maternal Age Mean years (±SEM) 31.0 (1.2) 32.6 (1.6)
Gestation at Delivery Mean weeks (±SEM) 30.9 (0.9) 32.2 (1.3)
Ethinicity–No. (%) Caucasian Asian 7 (87.5) 1(12.5) 5 (62.5) 3 (37.5)
BMI (kg/m2) Mean (±SEM) 30.9 (1.7) 26.4 (1.7)
Primiparous No. (%) 2 (25) 5 (62.5)
SBP at Delivery Mean mmHg (±SEM) 121.0 (3.3) 172.1 (5.8)**
DBP at Delivery Mean mmHg (±SEM) 73.4 (3.1) 110.7 (4.7)**
Birthweight Mean grams (±SEM) 1622 (176.4) 1551 (268.3)

Shown are clinical details of the two cohorts from whom we obtained placentas for our analyses. The preeclamptic cohort all had severe preeclampsia necessitating delivery preterm. Preterm controls where those who were delivered early for other indications but did not have preeclampsia. **p<0.001. SEM =  standard error of the mean, SBP =  systolic blood pressure, DBP =  diastolic blood pressure, BMI =  body mass index and GA =  gestational age.

Article Categories:
  • Research Article
Article Categories:
  • Biology
    • Anatomy and Physiology
      • Reproductive System
    • Biochemistry
      • Enzymes
        • Enzyme Classes
Article Categories:
  • Medicine
    • Cardiovascular
      • Hypertension
    • Obstetrics and Gynecology
      • Pregnancy
        • Hypertensive Disorders in Pregnancy
        • Pregnancy Complications
    • Women's Health

Previous Document:  Effects of local and landscape factors on population dynamics of a cotton pest.
Next Document:  How attractive is the girl next door? An assessment of spatial mate acquisition and paternity in the...