Document Detail

Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility.
MedLine Citation:
PMID:  23458305     Owner:  NLM     Status:  In-Data-Review    
We consider global asymptotic properties for the SIR and SEIR age structured models for infectious diseases where the susceptibility depends on the age. Using the direct Lyapunov method with Volterra type Lyapunov functions, we establish conditions for the global stability of a unique endemic steady state and the infection-free steady state.
Andrey V Melnik; Andrei Korobeinikov
Related Documents :
18559765 - Standardizing the 60-second hair count.
11667335 - Remarkably selective ag(+) extraction and transport by thiolariat ethers.
19159785 - Silver upd ultra-thin film modified nanoporous gold electrode with applications in the ...
23890775 - Serious fighting-related injuries produce a significant reduction in intelligence.
24433345 - Prevalence of disc displacement of various severities among young preorthodontic popula...
23567265 - Leukocyte telomere length is independently associated with gait speed in elderly women.
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Mathematical biosciences and engineering : MBE     Volume:  10     ISSN:  1551-0018     ISO Abbreviation:  Math Biosci Eng     Publication Date:  2013 Apr 
Date Detail:
Created Date:  2013-03-05     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101197794     Medline TA:  Math Biosci Eng     Country:  United States    
Other Details:
Languages:  eng     Pagination:  369-78     Citation Subset:  IM    
OCCAM, Mathematical Institute, 24 - 29 St Giles, Oxford, OX1 3LB, United Kingdom.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonot...
Next Document:  An extension of Gompertzian growth dynamics: Weibull and Frechet models.