Document Detail

Lung infection caused by Mycobacterium riyadhense confused with Mycobacterium tuberculosis: the first case in Korea.
Jump to Full Text
MedLine Citation:
PMID:  22779073     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
A slowly growing, non-chromogenic mycobacterial strain was isolated from sputum and bronchial lavage fluid samples of a patient presenting with productive cough, blood-tinged sputum, low-grade fever, and weakness. A positive acid-fast bacilli sputum smear result prompted the initiation of an anti-tuberculosis regimen. Multiplex real-time PCR showed a negative result for Mycobacterium tuberculosis complex and a positive result for nontuberculous mycobacteria. The DNA chip test confirmed this organism as a member of the genus Mycobacterium, but could not specify the species. Interestingly, the mycolic acid patterns obtained by HPLC nearly overlapped with those of M. simulans. The sequences of the Mycobacterium 16S rRNA gene and 16S-23S internal transcribed spacer region were unique and were found to have 100% similarity with those of M. riyadhense. After a review of the literature, we report this case as the first Korean case of M. riyadhense lung infection.
Authors:
Jung-In Choi; Ji-Hun Lim; Sung-Ryul Kim; Seon Ho Lee; Jae-Sun Park; Kwang Won Seo; Jae Bum Jeon; Joseph Jeong
Related Documents :
23431663 - Immigrant women's perceptions of their maternity care: a review of the literature part 1.
3545033 - Autotransfusion, an experience of seventy six cases.
9638383 - Afb staining in cytodiagnosis of tuberculosis without classical features: a comparison ...
Publication Detail:
Type:  Case Reports; Journal Article     Date:  2012-06-20
Journal Detail:
Title:  Annals of laboratory medicine     Volume:  32     ISSN:  2234-3814     ISO Abbreviation:  Ann Lab Med     Publication Date:  2012 Jul 
Date Detail:
Created Date:  2012-07-10     Completed Date:  2012-10-30     Revised Date:  2014-05-30    
Medline Journal Info:
Nlm Unique ID:  101571172     Medline TA:  Ann Lab Med     Country:  Korea (South)    
Other Details:
Languages:  eng     Pagination:  298-303     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Adult
Antitubercular Agents / pharmacology
Chromatography, High Pressure Liquid
Female
Humans
Lung Diseases / microbiology*
Microbial Sensitivity Tests
Mycobacterium / classification,  drug effects,  isolation & purification*
Mycobacterium Infections / microbiology
Mycobacterium tuberculosis / genetics,  isolation & purification
Mycolic Acids / analysis
Oligonucleotide Array Sequence Analysis
Phylogeny
RNA, Ribosomal, 16S / chemistry,  genetics
RNA, Ribosomal, 23S / chemistry,  genetics
Republic of Korea
Sequence Analysis, DNA
Chemical
Reg. No./Substance:
0/Antitubercular Agents; 0/Mycolic Acids; 0/RNA, Ribosomal, 16S; 0/RNA, Ribosomal, 23S
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Ann Lab Med
Journal ID (iso-abbrev): Ann Lab Med
Journal ID (publisher-id): ALM
ISSN: 2234-3806
ISSN: 2234-3814
Publisher: The Korean Society for Laboratory Medicine
Article Information
Download PDF
© The Korean Society for Laboratory Medicine.
open-access:
Received Day: 24 Month: 11 Year: 2011
Revision Received Day: 10 Month: 2 Year: 2012
Accepted Day: 17 Month: 5 Year: 2012
Print publication date: Month: 7 Year: 2012
Electronic publication date: Day: 20 Month: 6 Year: 2012
Volume: 32 Issue: 4
First Page: 298 Last Page: 303
ID: 3384813
PubMed Id: 22779073
DOI: 10.3343/alm.2012.32.4.298

Lung Infection Caused by Mycobacterium riyadhense Confused with Mycobacterium tuberculosis: The First Case in Korea
Jung-In Choi, M.D.1
Ji-Hun Lim, M.D.1
Sung-Ryul Kim, M.D.1
Seon Ho Lee, M.D.1
Jae-Sun Park, M.D.1
Kwang Won Seo, M.D.2
Jae Bum Jeon, M.D.2
Joseph Jeong, M.D.1
1Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea.
2Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea.
Correspondence: Corresponding author: Joseph Jeong. Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Jeonha 1-dong, Dong-gu, Ulsan 682-714, Korea. Tel: +82-52-250-7273, Fax: +82-52-250-8269, 690519@hitel.net

INTRODUCTION

Currently, there are more than 125 known species of nontuberculous mycobacteria (NTM) [1, 2]. NTM are generally free-living organisms that are ubiquitous in the environment [3, 4], and are often found as contaminating organisms in laboratory or medical equipment [3, 5]. This is true especially in Korea, which is a country with a relatively high prevalence of tuberculosis (TB) [6]. NTM infection results in a disease that is not severe; however, disseminated disease may be life threatening in immunocompromised patients [3]. In recent years, NTM infections have been diagnosed in immunocompetent individuals without predisposing conditions [7, 8]. Therefore, the identification of mycobacteria that are responsible for a specific disease and the differentiation between environmental and pathogenic species are important diagnostic issues in the treatment of patients [3].

Herein, we report a case of NTM lung infection without predisposing conditions, in which an individual had been inadequately treated, thus resulting in gradual progression to chronic pulmonary disease before the consultation at our institute. In this case, the patient's condition improved only once the etiology of her disease was finally deciphered at our hospital. Of note, the recently characterized species, Mycobacterium riyadhense, was responsible for the tuberculosis-like clinical symptoms that provided our laboratory data [9, 10]. According to the literature, the following is the first case report of M. riyadhense lung infection in Korea.


CASE REPORT

A 38-yr-old woman was admitted to the pulmonology department of the Ulsan University Hospital for productive cough, blood-tinged sputum, low-grade fever, and weakness. Three months prior to her admission, she had been diagnosed with bronchiectasis at the secondary referral center but her symptoms persisted after she completed treatment there. One month before consulting our hospital, she had experienced a mild fever, weakness, and anorexia. Additionally, she was diagnosed with pneumonia. However, her condition had progressed to a more constant cough and weight loss despite previous treatment, thus she was eventually hospitalized at our institute. Upon hospitalization, a chest radiograph revealed poorly defined ground-glass opacities, which were consistent with the diagnosis of pneumonia, and a computed tomography (CT) scan showed bronchiectasis with multiple cavitary nodules.

Specimens obtained from sputum and bronchial lavage fluid revealed the presence of acid-fast bacilli, based on auramine-rhodamine-stained fluorescence microscopy. Acid-fastness was verified by Ziehl-Neelsen stained smears from colonies grown on Mycobacteria Growth Indicator Tube (MGIT; Becton Dickinson, Sparks, MD, USA) liquid medium.

Multiplex real-time PCR performed with the AdvanSureTB/NTM real-time PCR Kit (LG Lifescience, Seoul, Korea) showed a negative result for M. tuberculosis complex (MTBC) and a positive result for NTM.

Clinical and radiologic signs and symptoms of pulmonary infection including cough, fever, weight loss, and multifocal bronchiectasis with multiple small nodules and positive culture results from a single bronchial lavage fulfilled the American Thoracic Society diagnostic criteria of NTM lung disease [3]. Thus the patient was presumed to have NTM lung disease and treatment was started employing the standard regimen with isoniazid (INH), rifampicin (RIF), pyrazinamide (PZA), and ethambutol (EMB).

After a week of treatment, which was well tolerated, the general condition of the patient improved and the sputum smears became mycobacteria-negative. Therefore, the patient was discharged and advised to continue the same therapy until the final diagnosis was confirmed. Cultures grown in MGIT medium produced acid-fast bacilli in 7-9 days. In 3% Ogawa solid egg-based medium (Asan Pharmaceutical, Seoul, Korea), small, non-pigmented, smooth colonies grew in approximately 14 days at 37℃. Conventional techniques were used to test for growth and biochemical characteristics [11, 12]. The patient-derived strain UUH-10070721646 was positive for nitrate reductase, catalase, and urease, was tolerant to INH, but negative for thermotolerant catalase (Table 1). However, these phenotypic features were not sufficient to differentiate strain UUH-10070721646 from other related Mycobacteria strains.

The mycolic acid analyses were also performed using HPLC, as described previously [13]. HPLC patterns were compared with patterns from standard mycobacterial species, which were obtained from 28 ATCC standard mycobacterial species and 5 Korean Type Culture Collection (KTCC) standard mycobacterial species. The mycolic acid pattern of strain UUH-10070721646 was characterized by a single, late cluster of peaks, which was clearly distinct from TB but nearly overlapping with those of M. simulans (Fig. 1).

To identify the organism at the species level, a commercial DNA chip assay (CombiChip Mycobacteria Genotyping DNA Chip; Gene In Inc., Busan, Korea) was performed, which implements the hybridization method by using an oligonucleotide chip containing internal transcribed spacer (ITS) sequence between the 16S rRNA and 23S rRNA of Mycobacterium, thereby identifying 20 species of mycobacteria (Panmycobacteria, MTBC, M. avium-intracellular complex, M. fortuitum, M. chelonae, M. abscessus, M. kansasii, M. gordonae, M. scrofulaceum, M. szulgai, M. vaccae, M. xenopi, M. terrae, M. flavescens, M. smegmatis, M. malmoense, M. simiae, M. marinum-ulcerance, M. gastri, and M. leprae). In this case, hybridization with the genus-specific probe and the failure to hybridize with species-specific probes indicated the presence of a Mycobacterium strain that did not belong to any species that was identifiable by the system.

For complete analysis, sequencing of the 16S rRNA gene and the 16S-23S ITS region was performed with a MJ Research PTC-225 Peltier Thermal Cycler using Applied Biosystems (ABI) PRISM BigDye Terminator Cycle Sequencing Kits and ABI 3730xl sequencer (Applied Biosystems, Foster City, CA, USA) by using the standard protocol [14]. The primer pair used for amplification consisted of 27F (5'-AGA GTT TGA TC [A/C] TGG CTC AG-3') and 1492R (5'-G [C/T] T ACC TTG TTA CGA CTT-3'). This primer pair amplifies a 1,500 bp fragment of the 16S rRNA gene between positions 8 and 1509 of the Escherichia coli 16S rRNA gene. We compared the obtained sequences with the GenBank and European Molecular Biology Laboratory (EMBL; National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov) gene sequence databases. The sequencing results are list ed in Table 2. The sequences of the 16S rRNA gene and 16S-23S ITS regions of strain UUH-10070721646 were unique and closely related to the recently described species, M. riyadhense [9]. In the complete sequence of the 16S rRNA of the current isolate, the similarity to the latter species was 100%, with 1 mismatch in 1,438 bp. In the hypervariable region of hsp65 [15], there were 3 mismatches (in 423 bp; similarity 99%). In the ITS, the presence of 7 mismatches in 278 bp was responsible for a similarity of 97%. In the 744 bp stretch of rpoB, M. riyadhense presented the closest similarity (95%, with 37 mismatches). In the same regions, the similarities with M. tuberculosis were clearly lower (98% in the 16S rRNA, 86% in hsp65, 88% in the ITS, and 91% in rpoB).

The 16S rRNA gene sequence was compared with those of reference strains of the most closely related mycobacterial species present in major international nucleotide sequence databases (GenBank, EMBL, DNA Data Bank of Japan [DDBJ]) using Clustal W software version 2 (http://www.ebi.ac.uk/tools/clustalw2) [16]. The resulting topology and tree that were inferred by neighbor-joining and visualized using the Molecular Evolutionary Genetics Analysis (MEGA) software package were evaluated by bootstrap analyses based on 1,000 resamplings (Fig. 2).

Although the patient seemed to show both clinical and radiological improvement after the first regimen of INH, RIF, PZA, and EMB, INH was discontinued after 8 months of treatment due to the results of an in vitro drug susceptibility test. The drug susceptibility test was performed according to the absolute concentration method (validated for MTB strains only) in Löwenstein-Jensen medium (Green Cross Reference Laboratory, Yongin, Korea), using the first-line and second-line drugs, and the minimal inhibitory concentrations were determined using the microdilution method recommended by the Clinical and Laboratory Standards Institute (CLSI) [17]. The results are interpreted following the CLSI guideline for other slowly growing NTM and newly described species, which are generally tested as for M. kansasii [17].

Strain UUH-10070721646 was found to be susceptible to RIF, EMB, kanamycin, rifabutin, amikacin, ethionamide, cycloserine, capreomycin, clarithromycin, and moxifloxacin, intermediately susceptible to ciprofloxacin, and was resistant to INH, streptomycin, ofloxacin, para-amino-salicylic acid, and levofloxacin by using the 2 methods above (Table 3).

The patient has been receiving clinical follow-up assessments for 13 months without recurrence of disease.


DISCUSSION

The incidence of pulmonary infection caused by NTM is increasing; however, it is not commonly described in Korean clinical settings. This may be explained by clinicians overlooking the possibility of an infection due to NTM, as Korea is still an endemic area for TB. Many pulmonary NTM patients are inadequately and unnecessarily treated for pulmonary TB. Furthermore, some patients are even misdiagnosed with multidrug resistant TB and treated with the secondary anti-TB regimen, as the clinical presentation of NTM is often difficult to differentiate from that of MTBC [9, 10, 18].

M. riyadhense can infect a patient without predisposing factors, resulting in the tuberculosis-like clinical symptoms that provided laboratory data from our patient. In this case, the patient's condition improved only once the etiology was finally uncovered. This is the first Korean report of a mycobacterial strain that was phenotypically and diagnostically confused with TB (but clearly distinct from it) and responsible for severe disease.

There are 4 case reports of M. riyadhense before UUH-1007 0721646 (Table 4) [9, 10, 19], the major features shared by UUH-10070721646 and these cases resulted in the confusion with MTBC. Commercial probes are frequently used for rapid identification of mycobacterial species [20]; however, M. riyadhense and other recently proposed NTM such as M. kumamotonense cross-react with MTBC DNA probes and may be overlooked by line-probe assays [18]. With the emergence of new NTM species, commercial probes could fail to discriminate between species, leaving clinical isolates either unidentified or misidentified. The clinical and radiologic signs and symptoms of pulmonary infection caused by the strain, including cough, weight loss, fever, and cavitating lung lesions, were also similar to those in typical cases caused by MTBC strains [9, 10, 19]. Another characteristic that this strain has in common with MTBC strains is the definite pathogenicity; each case showed evidence for the pathogenic role of the strain in pulmonary or extrapulmonary diseases. However, the strains differ in drug susceptibility; the first case was cured with standard anti-TB therapy of INH, RIF, and EMB that was ineffective in the second case, and the latter case was successfully treated with the combination of amikacin, ethionamide, moxifloxacin, clarithromycin, and EMB.

The strains in the third and fourth cases showed similar drug susceptibility patterns [19], which were sensitive to most first and second-line drugs, but resistant to doxicycline alone. The former was cured with INH, RIF, and EMB, while the latter patient relapsed after receiving clarithromycin and ciprofloxacin for 12 months, but then improved with anti-TB drugs (INH, RIF, EMB, PZA, clarithromycin, and ciprofloxacin). In the present case, UUH-10070721646 was treated with RIF, PZA, and EMB for 13 months without recurrence of disease.

Because of the scarcity of documented cases of M. riyadhense infection [9, 10, 19], no clinically approved agent for M. riyadhense infection is currently available [17]. Case 1 and 3 indicate that anti-TB drugs such as INH, RIF, and EMB are effective against M. riyadhense infection, but INH revealed in vitro resistance in case 2 and our case. Interestingly, the combination of clarithromycin and ciprofloxacin was not effective in case 4, despite the demonstration of in vitro susceptibility to these drugs.

Conventional laboratory culture, biochemical testing, and a limited molecular evaluation are sometimes insufficient for differentiating novel Mycobacterium species from M. tuberculosis. Biochemical methodologies are cumbersome, time-consuming, and may yield ambiguous and misleading results [21]. PCR and gene probe assays are known to yield fast and accurate results for the species-level identification of mycobacteria, but these methods are associated with the chance of contamination and a high false-positive rate, which can be difficult to sort out in various mycobacterial species and often require multiple steps to identify organisms at the species level [13, 22-24].

In the other cases of M. riyadhense, false-positive results from line-probe assays may lead to incorrect diagnoses of TB and unwarranted treatment, but in our case, misdiagnosis was prevented by PCR and HPLC, which excluded TB early on before the molecular diagnostic results were obtained. In this case, preliminary investigations by simple PCR provided a negative result, but persistent characterization of the strain by several genetic identification systems led to the first detection of M. riyadhense in Korea.

The characterization of this previously unknown pathogen raises new concerns for human health and demonstrates the continuing scope of the threat caused by NTM.


Notes

No potential conflicts of interest relevant to this article were reported.

References
1. Tortoli E. The new mycobacteria: an updateFEMS Immunol Med MicrobiolYear: 20064815917817064273
2. McNabb A,Eisler D,Adie K,Amos M,Rodrigues M,Stephens G,et al. Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sourcesJ Clin MicrobiolYear: 2004423000301115243051
3. Griffith DE,Aksamit T,Brown-Elliott BA,Catanzaro A,Daley C,Gordin F,et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of non-tuberculous mycobacterial diseasesAm J Respir Crit Care MedYear: 200717536741617277290
4. Subcommittee of the Joint Tuberculosis Committee of the British Thoracic SocietyManagement of opportunist mycobacterial infections: Joint Tuberculosis Committee Guidelines 1999ThoraxYear: 20005521021810679540
5. Forbes BA,Sahm DF,et al.Bailey and Scott's Diagnostic MicrobiologyYear: 200712th edSt. LouisMosby Elsevier481
6. Kim HJ. Current situation of tuberculosis and its control in KoreaJ Korean Med AssocYear: 200649762772
7. Prince DS,Peterson DD,Steiner RM,Gottlieb JE,Scott R,Israel HL,et al. Infection with Mycobacterium avium complex in patients without predisposing conditionsN Engl J MedYear: 19893218638682770822
8. Arend SM,van Soolingen D,Ottenhoff TH. Diagnosis and treatment of lung infection with nontuberculous mycobacteriaCurr Opin Pulm MedYear: 20091520120819305349
9. van Ingen J,Al-Hajoj SA,Boeree M,Al-Rabiah F,Enaimi M,de Zwaan R,et al. Mycobacterium riyadhense sp. nov., a non-tuberculous species identified as Mycobacterium tuberculosis complex by a commercial line-probe assayInt J Syst Evol MicrobiolYear: 2009591049105319406791
10. Tortoli E,Rogasi PG,Fantoni E,Beltrami C,De Francisci A,Mariottini A. Infection due to a novel mycobacterium, mimicking multidrug-resistant Mycobacterium tuberculosisClin Microbiol InfectYear: 2010161130113419832722
11. Lévy-Frébault VV,Portaels F. Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium speciesInt J Syst BacteriolYear: 1992423153231581193
12. Torkko P,Suutari M,Suomalainen S,Paulin L,Larsson L,Katila ML. Separation among species of Mycobacterium terrae complex by lipid analyses: comparison with biochemical tests and 16S rRNA sequencingJ Clin MicrobiolYear: 1998364995059466766
13. Jeong J,Kim SR,Lee SH,Choi JI,Chang CH,Choi JY,et al. The use of High Perfomance Liquid Chromatography to speciate and characterize the epidemiology of MycobacteriaLab MedYear: 201142612617
14. Schuurman T,de Boer RF,Kooistra-Smid AM,van Zwet AA. Prospective study of use of PCR amplification and sequencing of 16S ribosomal DNA from cerebrospinal fluid for diagnosis of bacterial meningitis in a clinical settingJ Clin MicrobiolYear: 20044273474014766845
15. Telenti A,Marchesi F,Balz M,Bally F,Bottger EC,Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysisJ Clin MicrobiolYear: 1993311751788381805
16. Larkin MA,Blackshields G,Brown NP,Chenna R,McGettigan PA,McWilliam H,et al. Clustal W and Clustal X version 2BioinformaticsYear: 2007232947294817846036
17. Clinical and Laboratory Standards InstituteSusceptibility testing of Mycobacteria, Nocardia, and other aerobic actinomycetes. Approved Standard M24-A2Year: 20112nd edWayne, PAClinical and Laboratory Standards Institute
18. Rodríguez-Aranda A,Jimenez MS,Yubero J,Chaves F,Rubio-Garcia R,Palenque E,et al. Misidentification of Mycobacterium kumamotonense as M. tuberculosisEmerg Infect DisYear: 2010161178118020587204
19. Godreuil S,Marchandin H,Michon AL,Ponsada M,Chyderiotis G,Brisou P,et al. Mycobacterium riyadhense pulmonary infection, France and BahrainEmerg Infect DisYear: 20121817617822261434
20. Tortoli E,Nanetti A,Piersimoni C,Cichero P,Farina C,Mucignat G,et al. Performance assessment of new multiplex probe assay for identification of mycobacteriaJ Clin MicrobiolYear: 2001391079108411230430
21. Springer B,Stockman L,Teschner K,Roberts GD,Böttger EC. Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methodsJ Clin MicrobiolYear: 1996342963038789004
22. Burman WJ. Review of false-positive cultures for Mycobacterium tuberculosis and recommendations for avoiding unnecessary treatmentClin Infect DisYear: 2000311390139511096008
23. Nah J,Huh JW,Lee SH,Kim BC,Koh YS,Pai CH. Identification of Mycobacterium tuberculosis complex using a gene probe methodKorean J Clin PatholYear: 1997177178
24. Reisner BS,Gatson AM,Woods GL. Use of Gen-Probe AccuProbes to identify Mycobacterium avium complex, Mycobacterium tuberculosis complex, Mycobacterium kansasii, and Mycobacterium gordonae directly from BACTEC TB broth culturesJ Clin MicrobiolYear: 199432299529987883888

Article Categories:
  • Case Report
    • Clinical Microbiology

Keywords: Nontuberculous mycobacteria, Mycobacterium, Mycobacterium riyadhense, Mycobacterium simulans.

Previous Document:  A case of near-triploidy in myelodysplastic syndrome with del(5q) combined with del(1p) and del(13q)...
Next Document:  Anaphylactic transfusion reaction in a patient with anhaptoglobinemia: the first case in Korea.