Document Detail


Low-intensity exercise exerts beneficial effects on plasma lipids via PPARgamma.
MedLine Citation:
PMID:  18580406     Owner:  NLM     Status:  In-Process    
Abstract/OtherAbstract:
INTRODUCTION: An important mechanism by which physical activity reduces the risk of cardiovascular disease is through regulating plasma lipids. We investigated whether low-intensity exercise modulates lipid metabolism and the transcription factors peroxisome proliferator-activated receptor gamma (PPARgamma) and liver X receptor alpha (LXRalpha) responsible for controlling reverse cholesterol transport (RCT). METHODS: Thirty-four sedentary adults, mean age 45.6 +/- 11.1 yr, participated in an 8-wk low-intensity exercise program consisting of walking 10,000 steps, three times a week. Subjects were randomly allocated to either an exercise group or a sedentary control group, and serum lipid or lipoprotein concentrations were determined. RESULTS: Compared with controls, there was a significant decrease in total cholesterol (preexercise, 5.73 +/- 1.39 mmol x L; postexercise, 5.32 +/- 1.28 mmol x L) and a significant increase in HDL (preexercise, 1.46 +/- 0.47 mmol x L; postexercise, 1.56 +/- 0.50 mmol x L) after the exercise program. There was a significant increase in serum oxidized LDL (oxLDL) concentrations in the exercise group before and after exercise (0 wk, 554 +/- 107 ng x mL; 4 wk, 698 +/- 134 ng x mL; 8 wk, 588 +/- 145 ng x mL). A significant increase in leukocyte mRNA expression for PPARgamma (4 wk, 1.8 +/- 0.9-fold; 8 wk, 4.3 +/- 1.9-fold) was observed, which was reinforced by increased PPARgamma DNA-binding activity postexercise (preexercise, 0.22 +/- 0.09 OD units; postexercise, 1.13 +/- 0.29 OD units). A significant increase in gene expression was observed for the oxLDL scavenger receptor CD36 (4 wk, 3.8 +/- 0.6-fold; 8 wk, 2.7 +/- 0.5-fold) and LXRalpha (8 wk, 3.5 +/- 0.8-fold). Two LXRalpha-regulated genes involved in RCT, namely, ATP-binding cassette transporters A1 and GI (ABCA1 and ABCG1, respectively), were significantly up-regulated postexercise (8 wk: ABCA1, 3.46 +/- 0.56-fold; ABCG1, 3.06 +/- 0.47-fold). CONCLUSION: We propose that the net effect of these changes may be to increase oxLDL uptake, to stimulate RCT, and thus to promote clearance of proatherogenic lipids from the vasculature, ultimately contributing to the cardiovascular benefits of low-intensity aerobic exercise.
Authors:
Lee R Butcher; Andrew Thomas; Karianne Backx; Aled Roberts; Richard Webb; Keith Morris
Related Documents :
2233196 - Immediate and delayed effects of marathon running on lipids and lipoproteins in women.
17172316 - Effects of high-intensity endurance and resistance exercise on hiv metabolic abnormalit...
1568986 - Effects of acute exercise intensity on plasma lipids and apolipoproteins in trained run...
2301216 - Effects of different exercise training intensities on lipoprotein cholesterol fractions...
900966 - Solar urticaria treatment by inducing tolerance to artificial radiation and natural light.
8201296 - Magnetocardiography and exercise testing.
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Medicine and science in sports and exercise     Volume:  40     ISSN:  0195-9131     ISO Abbreviation:  Med Sci Sports Exerc     Publication Date:  2008 Jul 
Date Detail:
Created Date:  2008-06-26     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8005433     Medline TA:  Med Sci Sports Exerc     Country:  United States    
Other Details:
Languages:  eng     Pagination:  1263-70     Citation Subset:  IM; S    
Affiliation:
Cardiff School of Health Sciences, University of Wales Institute, Cardiff, UNITED KINGDOM.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Trained men display increased Basal heat shock protein content of skeletal muscle.
Next Document:  Effects of acute aerobic exercise on high-molecular-weight adiponectin.