Document Detail


Low-Dose/Dose-Rate γ Radiation Depresses Neural Differentiation and Alters Protein Expression Profiles in Neuroblastoma SH-SY5Y Cells and C17.2 Neural Stem Cells.
MedLine Citation:
PMID:  21128788     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Abstract The effects of low doses of ionizing radiation on cellular development in the nervous system are presently unclear. The focus of the present study was to examine low-dose γ-radiation-induced effects on the differentiation of neuronal cells and on the development of neural stem cells to glial cells. Human neuroblastoma SH-SY5Y cells were exposed to (137)Cs γ rays at different stages of retinoic acid-induced neuronal differentiation, and neurite formation was determined 6 days after exposure. When SH-SY5Y cells were exposed to low-dose-rate γ rays at the onset of differentiation, the number of neurites formed per cell was significantly less after exposure to either 10, 30 or 100 mGy compared to control cells. Exposure to 10 and 30 mGy attenuated differentiation of immature C17.2 mouse-derived neural stem cells to glial cells, as verified by the diminished expression of glial fibrillary acidic protein. Proteomic analysis of the neuroblastoma cells by 2D-PAGE after 30 mGy irradiation showed that proteins involved in neuronal development were downregulated. Proteins involved in cell cycle and proliferation were altered in both cell lines after exposure to 30 mGy; however, the rate of cell proliferation was not affected in the low-dose range. The radiation-induced attenuation of differentiation and the persistent changes in protein expression is indicative of an epigenetic rather than a cytotoxic mechanism.
Authors:
Ainars Bajinskis; Heléne Lindegren; Lotta Johansson; Mats Harms-Ringdahl; Anna Forsby
Related Documents :
22618158 - Quantitative measurement of optical attenuation coefficients of cell lines cne1, cne2, ...
18814658 - A comparative study of inhibitory effect of human calprotectin on the growth of human g...
20732188 - Development of a modified micronucleus assay in vitro for detection of aneugenic effects.
20954078 - Determination of cytotoxicity attributed to multiwall carbon nanotubes (mwcnt) in norma...
22389198 - Extract of fermented brown rice induces apoptosis of human colorectal tumor cells by ac...
23706918 - A novel ameloblastoma cell line (am-3) secretes mmp-9 in response to wnt-3a and induces...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2010-12-3
Journal Detail:
Title:  Radiation research     Volume:  -     ISSN:  1938-5404     ISO Abbreviation:  -     Publication Date:  2010 Dec 
Date Detail:
Created Date:  2010-12-6     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0401245     Medline TA:  Radiat Res     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
a Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, The Arrhenius Laboratories for Natural Science, Stockholm University, Sweden.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Behavioral Responses to Immune-System Activation in an Anuran (the Cane Toad, Bufo marinus): Field a...
Next Document:  P2Y6 Receptors and ADAM17 Mediate Low-Dose Gamma-Ray-Induced Focus Formation (Activation) of EGF Rec...