Document Detail

Low Birth Weight due to Intrauterine Growth Restriction and/or Preterm Birth: Effects on Nephron Number and Long-Term Renal Health.
Jump to Full Text
MedLine Citation:
PMID:  22970368     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
Epidemiological studies have clearly demonstrated a strong association between low birth weight and long-term renal disease. A potential mediator of this long-term risk is a reduction in nephron endowment in the low birth weight infant at the beginning of life. Importantly, nephrons are only formed early in life; during normal gestation, nephrogenesis is complete by about 32-36 weeks, with no new nephrons formed after this time during the lifetime of the individual. Hence, given that a loss of a critical number of nephrons is the hallmark of renal disease, an increased severity and acceleration of renal disease is likely when the number of nephrons is already reduced prior to disease onset. Low birth weight can result from intrauterine growth restriction (IUGR) or preterm birth; a high proportion of babies born prematurely also exhibit IUGR. In this paper, we describe how IUGR and preterm birth adversely impact on nephrogenesis and how a subsequent reduced nephron endowment at the beginning of life may lead to long-term risk of renal disease, but not necessarily hypertension.
Authors:
Vladislava Zohdi; Megan R Sutherland; Kyungjoon Lim; Lina Gubhaju; Monika A Zimanyi; M Jane Black
Related Documents :
23097258 - Obesity, assisted reproductive technology, and early preterm birth--florida, 2004-2006.
19772968 - Categorizing neonatal deaths: a cross-cultural study in the united states, canada, and ...
3677748 - A technique for the administration of ribavirin to mechanically ventilated infants with...
24716748 - Surfactant treatment for neonatal respiratory disorders other than respiratory distress...
21772018 - The effect of preterm birth on thalamic and cortical development.
16096598 - Artificial nail aspiration masquerading as refractory croup.
Publication Detail:
Type:  Journal Article     Date:  2012-08-27
Journal Detail:
Title:  International journal of nephrology     Volume:  2012     ISSN:  2090-2158     ISO Abbreviation:  Int J Nephrol     Publication Date:  2012  
Date Detail:
Created Date:  2012-09-12     Completed Date:  2012-09-13     Revised Date:  2013-03-14    
Medline Journal Info:
Nlm Unique ID:  101546753     Medline TA:  Int J Nephrol     Country:  United States    
Other Details:
Languages:  eng     Pagination:  136942     Citation Subset:  -    
Affiliation:
Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Int J Nephrol
Journal ID (iso-abbrev): Int J Nephrol
Journal ID (publisher-id): IJN
ISSN: 2090-214X
ISSN: 2090-2158
Publisher: Hindawi Publishing Corporation
Article Information
Download PDF
Copyright © 2012 Vladislava Zohdi et al.
open-access:
Received Day: 4 Month: 5 Year: 2012
Revision Received Day: 23 Month: 6 Year: 2012
Accepted Day: 2 Month: 7 Year: 2012
Print publication date: Year: 2012
Electronic publication date: Day: 27 Month: 8 Year: 2012
Volume: 2012E-location ID: 136942
ID: 3434386
PubMed Id: 22970368
DOI: 10.1155/2012/136942

Low Birth Weight due to Intrauterine Growth Restriction and/or Preterm Birth: Effects on Nephron Number and Long-Term Renal Health
Vladislava Zohdi1
Megan R. Sutherland1
Kyungjoon Lim2
Lina Gubhaju3
Monika A. Zimanyi4
M. Jane Black1*
1Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
2Neuropharmacology, Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
3Preventative Health, Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
4Department of Anatomy and Pathology, School of Medicine, James Cook University, Townsville, QLD 4810, Australia
Correspondence: *M. Jane Black: jane.black@monash.edu
[other] Academic Editor: Umberto Simeoni

1. Introduction

Low birth weight infants are at increased risk of renal disease. A reduced complement of nephrons at the beginning of life in infants that are intrauterine growth restricted (IUGR) and/or born preterm may be the cause of their long-term risk of renal disease. A reduced nephron endowment in low birth weight infants may also lead to vulnerability to hypertension in adulthood; however, experimental evidence suggests that they are not causally linked. In this paper we discuss how IUGR and preterm birth adversely impact on nephron endowment and how this has the potential to lead to deleterious effects on renal health.

The novelty of this paper is the emphasis on both preterm birth and IUGR leading to low birth weight; the effects of preterm birth on the kidney have only recently been described, and many of these studies have been undertaken in our laboratory. In this regard, much of the information reported in this paper has been derived from studies over the last decade in our laboratory.


2. Low Birth Weight due to IUGR and/or Preterm Birth

Low birth weight is defined as a birth weight of an infant less than 2500 grams at full term [1]. It can result from intrauterine growth restriction and/or preterm birth. IUGR is often a comorbidity of preterm birth and it is linked with induction of assisted and nonassisted premature delivery [2, 3].

2.1. Intrauterine Growth Restriction (IUGR)

The diagnosis of IUGR is assigned to infants with a birth weight and/or birth length below the 10th percentile for gestational age [4]. IUGR is multifactorial in origin and occurs in 4–10% of all term pregnancies [5]; as shown in Figure 1, IUGR is a manifestation of many possible fetal, placental, and maternal disorders [1]. Restriction of blood flow to the fetus is a common element to most IUGR pregnancies, resulting in lack of oxygen and nutrient delivery to the fetus [6, 7]. In developing countries, the major cause of IUGR is maternal undernutrition and/or malnutrition, whereas in developed countries, the majority of IUGR pregnancies are the result of placental insufficiency. The placenta is an important interface between mother and fetus, supplying oxygen and nutrients to the fetus and removing waste products. Hence, the maternal and fetal components of the placenta must be adequately perfused [8]. Placental insufficiency is mainly due to an inadequate vascular adaptation at the uteroplacental interface [9], which ultimately leads to fetal hypoxia and hypoglycaemia and subsequent fetal growth restriction [9, 10].

2.2. Preterm Birth

Preterm birth is defined as birth prior to 37 completed weeks of gestation [11]; it can be further subdivided according to severity [12]: near term (34–37 weeks gestation), moderately preterm (32-33 weeks gestation), very preterm (28–31 weeks gestation), and extremely preterm (<28 weeks gestation). Preterm birth currently accounts for 9.6% of births worldwide [13], with 12.3% of births in the USA [14] and 8.2% of births in Australia [15] being preterm. In developing countries, the incidence of preterm birth is generally higher; for example, the rates of preterm birth in southern Africa are 17.5% [13].

The proportion of preterm births is different for each gestational age category, with the majority of preterm births being near term; approximately 60% of preterm births are at 34–36 weeks gestation, 20% at 32-33 weeks, 15% at 28–31 weeks, and just 5% of preterm births are at less than 28 weeks gestation [12]. The incidence of preterm birth continues to rise worldwide [1618]; this is largely attributed to the escalating use of assisted reproductive therapies over recent years (which has increased the number of multiple births) and to the rise in the number of deliveries following clinical intervention [12, 19]. More accurate assessments of gestational age at birth in recent times are also likely to have contributed to the number of neonates classified as being preterm [18].

The majority of preterm births (approximately 40%) occur due to spontaneous preterm labour, 25% occur following premature prelabour rupture of membranes, and 35% are clinically indicated [12]. The cause of preterm birth is often multifactorial in origin, with a large number of risk factors identified. These include maternal ethnicity, previous preterm birth, short time interval between pregnancies, low maternal body mass index, maternal smoking, multiple pregnancy, maternal stress, and also maternal medical conditions such as depression, cervical incompetence, thyroid disease, asthma, diabetes, and hypertension. The most significant contributor to preterm birth is intrauterine infection (including chorioamnionitis), which may be involved in up to 40% of preterm births [20, 21].

Importantly, both IUGR and preterm birth have the potential to adversely impact on kidney development; in the case of IUGR, this occurs in utero and in preterm infants, this occurs in the early neonatal period (Figure 2). This is particularly important in relation to the timing of nephrogenesis (the formation of nephrons) in the kidney.


3. Renal Development

The formation of the metanephric kidney commences at approximately week 5 of gestation with an outgrowth of cells from the caudal end of the nephric duct termed the ureteric bud [22, 23]. Reciprocal interactions subsequently occur between the ureteric bud and the metanephric mesenchyme, a mass of embryonic cells located at the base of the nephric cord. These interactions result in the differentiation of the mesenchyme to form nephrons and the growth and bifurcation of the ureteric bud to form the collecting ducts [22, 24].

The architecture of nephron arrangement within the human kidney is derived through the process of branching morphogenesis. As described by Osathanondh and Potter [23], 6–8 generations of ureteric branches form distal to the minor calyces by the completion of ureteric bud branching at approximately week 14-15 of gestation, with nephrons induced to differentiate at the ureteric bud tips (ampullae) from approximately the 9th week of gestation. After the cessation of active branching, 2–8 additional nephrons are induced to form at branch tips that have previously generated a nephron; in this way, generations of nephrons are formed in an arcade arrangement. The final nephrons formed after approximately 22 weeks gestation are attached individually to the terminal end of the ureteric branches; 8–10 generations of nephrons are formed in the human kidney by the completion of nephrogenesis [23, 25].

In the process of nephrogenesis, the induced mesenchyme condenses at the tip of the ureteric bud to form aggregates which then mature into renal vesicles. These subsequently progress into “comma shaped” and “S-shaped” bodies. The S-shaped body then fuses with a collecting duct and differentiates into a nephron. The renal corpuscle (comprised of the glomerulus and the Bowman's capsule) arises from the lower limb of the S-shaped body through a process of glomerulogenesis. Firstly, the inner cells of the lower cleft of the S-shaped body differentiate into the glomerular (visceral) podocytes, while the outer cells form the parietal podocytes which line the Bowman's capsule [22, 23, 26]. During the differentiation of podocytes, endothelial precursor cells from the mesenchyme invade the lower cleft and differentiate to form the capillary loop [27]. Both the podocyte epithelium and the developing endothelial cells actively synthesise the components required to form the shared glomerular basement membrane. The podocytes fuse with the developing glomerular basement membrane and further differentiate to form foot processes; the endothelium flattens and becomes fenestrated [27].


4. IUGR and Preterm Birth Adversely Impact on Nephrogenesis

Importantly, nephrogenesis is normally completed by 32–36 weeks gestation, with no new nephrons formed for the lifetime of the individual after this time [23, 28]. The nephrons are the functional units of the kidney, hence, the number of nephrons formed within the kidney at completion of nephrogenesis directly influences lifetime renal functional capacity and reserve [29]; it is essential, therefore, that adequate nephrogenesis is achieved at the very beginning of life. Autopsy studies over the past two decades have demonstrated that there is a wide range in nephron number in the human kidney [3038]; overall, nephron number has been shown to range from approximately 200,000 to over 2 million per kidney [39]. The wide range in nephron number between individuals is likely attributed to differences in nephron endowment by the completion of nephrogenesis (which may be due to genetic and/or environmental factors), as well as differences in the exposure to secondary insults throughout life, which lead to loss of nephrons. In this regard, exposure to IUGR and/or preterm birth can negatively impact on nephrogenesis and thus adversely impact on nephron endowment at the beginning of life.


5. IUGR Leads to a Reduction in Nephron Endowment

A number of autopsy studies have reported a significant reduction in nephron number as a result of IUGR [31, 40, 41]. For example, it was found that nephron number in stillborn infants with IUGR was significantly reduced compared to infants that were appropriately grown-for-gestational age [40]. In another study, a linear relationship was reported between the number of glomeruli (and therefore nephrons) and birth weight in full-term neonates; neonates below the 10th percentile of birth weight had 30% fewer glomeruli than the neonates with birth weights above the 10th percentile [41]. In addition, many experimental studies in various animal models demonstrate that IUGR leads to a reduced nephron endowment at birth. Indeed, a low nephron endowment has been reported following naturally occurring IUGR due to twinning [4244] and in experimentally induced IUGR offspring as a result of maternal nutritional deprivation [45, 46], maternal protein restriction [4751], uterine artery ligation [52], and placental embolisation [10, 53]. In general, at the time of birth, kidney size is proportional to body size and nephron number is directly proportional to kidney size [5456]; however, in the event that the growth restriction occurs late in gestation when nephrogenesis is complete (or nearing completion), this relationship does not exist [53].


6. Nephrogenesis Continues after Preterm Birth, but There Is Evidence of Glomerular Abnormalities and Acceleration of Renal Maturation

It has been proposed in previous studies that preterm birth leads to a reduced nephron endowment; Rodríguez et al. [57] found that preterm neonates (in particular those with a history of acute renal failure) had a significantly reduced number of glomerular generations compared to term-born controls. Additionally, a recently published experimental study demonstrated that a 20% reduction in nephron number occurred following premature delivery at 1-2 days prior to term birth in a preterm mouse model [58].

Preterm birth occurs at a time when nephrogenesis is often ongoing in the kidney of the infant. In our laboratory, we have clearly demonstrated in both baboon and human kidneys that nephrogenesis continues after preterm birth [54, 59]; observation of kidney sections from these preterm neonates clearly demonstrates an active nephrogenic zone with evidence of developing immature glomeruli. Furthermore, using unbiased stereological techniques, we have shown that the number of glomerular generations and the total number of nephrons increases in the postnatal period after preterm birth, thus, indicating that nephrogenesis continues in the extrauterine environment [54, 59]. Total nephron number appears to be within the normal range, albeit at the lower end of the normal range [54].

Of particular concern, many of the glomeruli in the outer cortex appeared markedly abnormal in some of the preterm kidneys; the number of abnormal glomeruli varied widely, from less than 1% to as high as 13% of glomeruli in the preterm human kidney [59] and 22% in the preterm baboon kidney [54, 55, 60]. As shown in Figure 3, the abnormal glomeruli exhibit a cystic morphology with a grossly enlarged Bowman's space. They are located within the outer renal cortex and are observed to be in an immature stage of development; the glomerular tuft is composed of an undifferentiated anlage of cells surrounded by a layer of podocytes with scant, if any, capillarisation [54, 55].

Our findings thus strongly suggest that it is the glomeruli formed postnatally in the extrauterine environment that are vulnerable to abnormalities. The abnormal glomerular morphology is characteristic of atubular glomeruli [61, 62], and if this is the case these glomeruli will never be functional. Hence, in infants with a high proportion of abnormal glomeruli, this will markedly impact on the number of functional nephrons at the beginning of life. Why some kidneys exhibit gross glomerular abnormalities whereas others are relatively unaffected is unknown, but likely relates to differences in the early postnatal care of the preterm infants whilst in the neonatal intensive care unit. For example, extremely preterm infants are known to experience extrauterine growth restriction (EUGR) since they generally do not achieve the normal rate of growth ex utero as that in utero [63, 64]. This is likely to have significant implications for ongoing nephrogenesis and consequently on renal function in adult life, therefore, in future studies, it is important to ascertain ways in which to achieve optimal renal development in the neonatal intensive care unit setting.


7. Glomerular Hypertrophy and Accelerated Renal Maturation in Preterm Neonates

Interestingly, we have shown a marked increase in the size of the preterm kidneys in the neonatal period which is not proportional to body size [54, 59]. In this regard, although absolute nephron number among preterm baboons was found to be within the normal range, on average the number of nephrons per gram of kidney tissue was significantly reduced in preterm baboon kidneys; 83,840 nephrons/gram were compared to 193,400 nephrons/gram in age-matched gestational controls [54]. These findings thus imply that there is glomerular hypertrophy (now clearly linked with renal pathology) and increased tubular mass within the renal cortex of the preterm kidneys. Quantitative examination of kidney tissue from preterm human neonates that was collected at autopsy subsequently confirmed that there was both glomerular hypertrophy and accelerated maturation of renal development in preterm kidneys after birth [59]. For example, there was a significant reduction in the width of the nephrogenic zone when compared to the kidneys from appropriately grown postconceptional age-matched stillborn infants [59]. Hence, although nephrogenesis was ongoing in the preterm kidneys, the reduced width of the nephrogenic zone implies that there was a diminished capacity to form new nephrons, probably due to acceleration in renal maturation. In support of this idea, we also showed a significant reduction in the proportion of the most immature glomeruli (vesicles) within the nephrogenic zone, indicative of fewer new glomeruli forming in the extrauterine environment.

In addition to accelerated maturation, there was also evidence of glomerular hypertrophy, probably due to the increased functional demands on the kidney after birth and/or an increase in renal blood flow. If this hypertrophy persists into later life, it is likely to lead to deleterious effects on renal function given that glomerular hypertrophy is linked to renal pathology in adulthood [39, 65]. Indeed, long-term hyperfiltration of hypertrophied glomeruli is proposed to lead to the development of glomerulosclerosis and subsequent glomerular loss [66, 67], thus, further reducing the functional capacity of the kidney.


8. Renal Blood Flow Increases at Birth

The glomerular hypertrophy and accelerated renal maturation in preterm infants are not surprising, given the marked change in hemodynamics at the time of birth and the increased functional demands on the kidney ex utero. Overall, the haemodynamic adaptations of the fetal kidney to extrauterine life involve transformation from a high vascular resistance fetal organ with low blood flow (primary blood flow to the inner cortex), into a high blood flow, low vascular resistance organ with primary blood supply to the outer renal cortex [68]. Blood flow to the kidneys is very low during fetal life, with a fetus at 10–20 weeks gestation only receiving 5% of cardiac output [6971]. After birth, renal blood flow almost doubles, increasing to approximately 9% of cardiac output [69].

Importantly, studies in animal models with ongoing postnatal nephrogenesis have shown that after birth there initially remains a low blood flow to the outer renal cortex which is likely a protective mechanism to protect developing, immature glomeruli in this region of the kidney [72]. It is unknown, however, whether this protective pattern of blood distribution is also present in the kidney of the preterm human neonate, which is especially important given that these kidneys are structurally very immature and nephrogenesis is still ongoing in the outer renal cortex after birth.


9. Low Birth Weight Is Linked to Long-Term Vulnerability to Hypertension and Renal Disease

There are a number of studies both in humans and experimental models showing a link between low birth weight and long-term increases in blood pressure and susceptibility to the development of renal disease.

A systematic review of eighty studies, that had investigated the relationship between levels of blood pressure and birth weight, showed that in the majority of studies (conducted in either children, adolescents, or adults) blood pressure fell with increasing birth weight; there was an approximately 2 mmHg decrease in blood pressure for each increase in 1 kg of birth weight [73]. Although these effects on blood pressure appear relatively modest, they certainly have the potential to magnify cardiovascular risk, especially when other adverse life-style factors come into play. Indeed, only small changes in blood pressure can elevate cardiovascular risk; a relative rise of 2 mmHg in blood pressure is associated with 6% increased risk of coronary artery disease and a 15% increased risk of stroke [74].

In addition to long-term effects on blood pressure, there is substantial epidemiological data linking low birth weight with chronic kidney disease. In this regard, a recent meta-analysis of 31 relevant studies, conducted by White et al. [75], concluded that subjects born of low birth weight have a 70% greater risk of developing kidney disease. However, the authors did emphasise the need for additional well-designed population-based studies where confounders such as maternal health and socioeconomic factors are taken into account.

Most of the studies used in the meta-analyses described above have not separated low birth weight due to IUGR and preterm birth. Importantly, in this regard, there is now mounting epidemiological evidence linking preterm birth with the induction of hypertension in adults [7684] and even in children [8587]; there is an inverse relationship between gestational age at birth and level of blood pressure. For example, a recent study reported a 0.53 mmHg reduction in systolic blood pressure for every 1 week increase in gestational age at birth [83]. In addition, there are an emerging number of reports of adverse effects on renal function later in life in subjects that were born preterm (Table 1). However, it is to be noted that renal impairments are not a universal finding among studies involving preterm neonates which may be related to the more severe outcomes found among extremely preterm neonates born with a very low birth weight (VLBW; defined as birth weight less than 1000 grams). In support of this idea, Keijzer-Veen et al. [88] reported lower glomerular filtration rate and higher urinary albumin excretion in adults born extremely preterm who were also small-for-gestational age, compared to those born preterm and appropriate-for gestational age. Among children, Kwinta et al. [89] reported impaired renal function and reduced kidney volume among VLBW preterm neonates at 6-7 years of age and Zaffanello et al. [90] showed increased protein excretion among children born extremely LBW compared to children born VLBW. As discussed earlier, postnatal nutrition and weight gain may adversely impact on ongoing nephrogenesis and long-term renal function; in relation to this, Bacchetta et al. [91] have demonstrated lower glomerular filtration rate (albeit in the normal range) among children born very preterm (<30 weeks gestation) that were either IUGR or EUGR, compared to children with appropriate prenatal and postnatal growth. Furthermore, Kwinta et al. [89] have demonstrated a 33% reduced odds of renal impairment among children born very low birth weight if they gained weight during their stay at the neonatal intensive care unit.

The mechanisms leading to the increased risk of developing elevated blood pressure and vulnerability to long-term renal disease in low birth weight infants are currently unknown; a reduced nephron endowment at the beginning of life are postulated to play a role.


10. A Reduced Nephron Endowment in Early Life Is Not Causally Linked to the Development of Hypertension, but Likely Leads to Vulnerability to Long-Term Renal Disease

Convincing evidence from renal cross-transplantation studies directly implicates the kidney in the induction of essential/primary hypertension. For example, both human and experimental studies have shown that when the kidney from a hypertensive donor is transplanted into a normotensive recipient, it leads to the induction of hypertension in the recipient; the opposite occurs when the kidney from a normotensive donor is transplanted into a hypertensive recipient [97100]. Further supporting the role of the kidney in the aetiology of hypertension, when a kidney from a young spontaneously hypertensive rat (prior to the onset of high blood pressure) is transplanted into a normotensive breed of rat, the recipient develops hypertension in early adulthood as is normally seen in the spontaneously hypertensive donor [97].

In the late 1980s, Brenner et al. [101] put forward the hypothesis that the fundamental renal abnormality that leads to hypertension is a reduced filtration surface area; this could be brought about by a reduction in the number of nephrons in the kidney and/or a decrease in renal filtration surface area per nephron [101]. Since, Brenner and colleagues initially put forward this hypothesis, there have been a multitude of experimental studies investigating the effects of early life insults (such as IUGR) on nephron endowment at the beginning of life [48, 53, 56, 102] and the long-term effects on blood pressure [4850, 52, 103107]. Although there has been considerable experimental support for the concept that a reduced nephron endowment leads to hypertension, the findings are far from universal. For instance, in the rat model of maternal protein restriction Langley-Evans et al. [48], Sahajpal and Ashton [104], Woods et al. [108, 109] have observed long-term elevations in blood pressure in the presence of a reduced nephron endowment, whereas studies from our and other laboratories show no rise in blood pressure in adulthood [4951, 110]. A number of studies suggest that the discrepancies in findings between studies relate to differences in methodologies associated with the measurement of blood pressure; it appears that the IUGR offspring has an exaggerated stress response, so when the measurement of blood pressure leads to stress in the rats, they have an elevation in blood pressure [105, 111]. Indeed, in many of the early studies, blood pressure was measured only at one time point in unconditioned rats using tail-cuff plethysmography; these papers are repeatedly cited in the literature as evidence of IUGR leading to an elevation in blood pressure, but it is now becoming well-accepted that an elevated stress response was probably the mediator. In fact, recent studies from the same laboratory show a decrease in blood pressure when it is measured by telemetry, but an elevation of blood pressure is apparent when blood pressure is measured by tail-cuff plethysmography [105]. A commonly quoted human study is that of Keller et al. [35] where a significant reduction in the number of nephrons per kidney was found in an autopsy study of middle-aged white subjects from Germany who suffered from primary hypertension when compared to normotensive subjects. It is important to keep in mind when interpreting the findings of such studies that hypertension can lead to renal injury [112, 113] and so the reduction in nephron endowment may have been a result of the hypertension, not the cause. However, this does not appear to be the case in the study by Keller et al. [35]; the proportion of sclerotic glomeruli in the hypertensive kidneys was low (<5-6%).

Importantly, in our laboratory, we have conducted a number of studies which have addressed the Brenner hypothesis [49, 53, 114, 115]. In our IUGR models, the data generated could neither refute nor support Brenner's hypothesis. Using gold standard stereological techniques, we counted the number of nephrons as well as measured renal filtration surface area within the IUGR kidney [49, 53]. In all instances of reduced nephron endowment, we observed a compensatory increase in glomerular size with a concomitant increase in glomerular filtration surface area per glomerulus, such that renal filtration surface area was not compromised [49, 53]. Hence, in our model of IUGR, since renal filtration surface area was not compromised, it was not surprising (based on Brenner's hypothesis) that blood pressure was not affected [49]. Using an alternative approach, we have undertaken cross-breeding studies between spontaneously hypertensive rats and the normotensive Wistar Kyoto strain [114]; in the F2 progeny (where there is a random segregation of the SHR and WKY genes), the offspring displayed a wide range of blood pressures. To examine whether there was a direct corollary between the level of blood pressure and nephron number and/or renal filtration surface area, we conducted regression analyses in the F2 progeny; in these studies, we found no significant correlations between level of blood pressure and nephron endowment or renal filtration surface area [114].

Hence, overall the experimental evidence now clearly indicates that a reduced nephron endowment at the beginning of life does not necessarily lead to hypertension. However, it is conceivable that when the functional reserve of nephrons is severely reduced, the glomeruli will eventually reach the limits of physiological compensatory hypertrophy and pathological mechanisms will come into play; elevations in blood pressure may then also ensue. Indeed, prolonged hyperfiltration of hypertrophied glomeruli can ultimately lead to glomerulosclerosis and eventual glomerular loss [116, 117]. Since it is loss of glomeruli throughout life which accelerates risk and ultimately leads to end stage renal disease, it is likely that vulnerability to disease will be increased when the functional reserve is reduced prior to disease onset. In this regard, it has been postulated that a congenital nephron deficit acts as an initial insult to the kidney, which when combined with subsequent postnatal insults (secondary hits), leads to an exacerbated decline in renal function [118]. There are a number of experimental studies that support this idea, whereas other studies do not. For example, IUGR with a concomitant reduction in nephron endowment has been shown to lead to more severe glomerulosclerosis in a model of mesangioproliferative glomerulonephritis in rats [119]. In addition, in our laboratory, we have shown that the kidneys of IUGR rat offspring, with a reduced nephron endowment, are more vulnerable to the infusion of advanced glycation end products (AGEs) [50]. This implies that IUGR kidneys with a congenital nephron deficit may be more vulnerable to the induction of diabetes, given that AGE formation is markedly elevated with hyperglycemia and their accumulation in tissues is linked to the pathogenesis of end-organ damage in diabetes [120]. Consistent with this idea, the progression of renal disease is faster in patients with a single kidney [121]. We have subsequently gone on to examine the effect of induction of streptozotocin diabetes in adulthood in our IUGR maternal protein restriction rat model [122]. Interestingly, we found that the marked impairment of hyperglycemia on renal function was not exacerbated in the IUGR rats compared to controls [122]. This is possibly due to compensatory glomerular hypertrophy in the IUGR offspring. When Jones et al. [123] examined the effect of induction of streptozotocin diabetes on renal structure in IUGR rats, they found that IUGR rats had a greater proportional increase in renal size compared to non-IUGR diabetic rats; following insulin treatmen,t the renal hypertrophy was reduced but the glomeruli remained hypertrophied in the IUGR rats [123]. A number of experimental studies have also examined the effect of feeding a high-salt diet to IUGR rats as a secondary renal insult to rats with a congenital nephron deficit; in general, it appears that the IUGR kidneys can adequately cope with an increased salt load [49, 51]. In this regard, findings from our laboratory showed no evidence of salt-sensitive hypertension in IUGR rats when fed a high-salt diet in adulthood; analysis of the kidneys showed compensatory glomerular hypertrophy in the IUGR rats with the congenital nephron deficit such that renal filtration surface area was not different when compared to controls. However, when nephron number is markedly reduced this is not likely to be the case; administration of a high-salt diet in uninephrectomised IUGR rats has been shown to lead to a marked reduction in glomerular filtration rate and elevation in blood pressure [124].


11. Summary

This paper has shown how IUGR and preterm birth can adversely impact on the number of nephrons in the kidney and lead to glomerular hypertrophy; this in turn can lead to the induction of pathological processes within the kidney when the glomeruli reach their limits of compensation. A reduced nephron endowment does not necessarily lead to hypertension but renders the kidney vulnerable to long-term renal disease. Since IUGR is often a comorbidity of preterm birth, it is likely that individuals who were born IUGR and preterm will be particularly vulnerable to secondary renal insults.


Authors' Contribution

V. Zohdi and M. R. Sutherland are joint first authors.


References
1. Resnik R. Intrauterine growth restrictionObstetrics and GynecologyYear: 20029934904962-s2.0-003618635311864679
2. Gardosi JO. Prematurity and fetal growth restrictionEarly Human DevelopmentYear: 200581143492-s2.0-1354425879915707714
3. Zeitlin J,Ancel PY,Saurel-Cubizolles MJ,Papiernik E. The relationship between intrauterine growth restriction and preterm delivery: an empirical approach using data from a European case-control studyBritish Journal of Obstetrics and GynaecologyYear: 200010767507582-s2.0-003406704310847231
4. Wollmann HA. Intrauterine growth restriction: definition and etiologyHormone ResearchYear: 199849supplement 2162-s2.0-17044442806
5. Bassan H,Leider Trejo L,Kariv N,et al. Experimental intrauterine growth retardation alters renal developmentPediatric NephrologyYear: 2000153-41921952-s2.0-003363548811149109
6. Kiserud T. Physiology of the fetal circulationSeminars in Fetal and Neonatal MedicineYear: 20051064935032-s2.0-2764458871716236564
7. Lang U,Baker RS,Braems G,Zygmunt M,Künzel W,Clark KE. Uterine blood flow—a determinant of fetal growthEuropean Journal of Obstetrics Gynecology and Reproductive BiologyYear: 2003110S55S612-s2.0-0041834771
8. Reynolds LP,Redmer DA. Utero-placental vascular development and placental functionJournal of animal scienceYear: 1995736183918512-s2.0-00293154477545661
9. Huang STJ,Vo KCT,Lyell DJ,et al. Developmental response to hypoxiaThe FASEB JournalYear: 20041812134813652-s2.0-4344615363
10. Louey S,Cock ML,Stevenson KM,Harding R. Placental insufficiency and fetal growth restriction lead to postnatal hypotension and altered postnatal growth in sheepPediatric ResearchYear: 20004868088142-s2.0-003366756011102551
11. World Health OrganizationInternational Classification of Diseases and Related Health Problems. 10th RevisionYear: 1992Geneva, SwitzerlandWorld Health Organization
12. Goldenberg RL,Culhane JF,Iams JD,Romero R. Epidemiology and causes of preterm birthThe LancetYear: 2008371960675842-s2.0-37449004386
13. Beck S,Wojdyla D,Say L,et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidityBulletin of the World Health OrganizationYear: 201088131382-s2.0-7454913153620428351
14. Mathews TJ,Miniño AM,Osterman MJK,Strobino DM,Guyer B. Annual summary of vital statistics: 2008PediatricsYear: 201112711461572-s2.0-7865076443021173001
15. Laws PJ,Li Z,Sullivan EA. Australia’s Mothers and Babies 2008Canberra, AustraliaAustralian Institute of Health and Welfare (Perinatal Statistics Series No. 24).
16. Tracy SK,Tracy MB,Dean J,Laws P,Sullivan E. Spontaneous preterm birth of liveborn infants in women at low risk in Australia over 10 years: a population-based studyBJOGYear: 200711467317352-s2.0-3424906025817516965
17. Martin JA,Hamilton BE,Sutton PD,Ventura SJ,Menacker F,Kirmeyer S. Births: final data for 2004National Vital Statistics ReportsYear: 200655111012-s2.0-39049180587
18. Shennan AH,Bewley S. Why should preterm births be rising?British Medical JournalYear: 200633275479249252-s2.0-3364607094416627490
19. Slattery MM,Morrison JJ. Preterm deliveryThe LancetYear: 20023609344148914972-s2.0-0037048905
20. Goldenberg RL,Hauth JC,Andrews WW. Intrauterine infection and preterm deliveryThe New England Journal of MedicineYear: 200034220150015072-s2.0-003468225110816189
21. Menon R,Taylor RN,Fortunato SJ. Chorioamnionitis—a complex pathophysiologic syndromePlacentaYear: 20103121131202-s2.0-7504908615120031205
22. Saxen L. Organogenesis of the KidneyYear: 1987Cambridge, UKCambridge University Press
23. Osathanondh V,Potter E. Development of human kidney as shown by microdissection. III. Formation and interrelationship of collecting tubules and nephronsArchives of PathologyYear: 1963762903022-s2.0-7544912116614058156
24. Costantini F,Shakya R. GDNF/Ret signaling and the development of the kidneyBioEssaysYear: 20062821171272-s2.0-3364455582416435290
25. dos Santos AM, Ferraz MLF,Rodriguez MLP,et al. Assessment of renal maturity by assisted morphometry in autopsied fetusesEarly Human DevelopmentYear: 200682117097132-s2.0-3375037985816687220
26. Dressler GR. The cellular basis of kidney developmentAnnual Review of Cell and Developmental BiologyYear: 2006225095292-s2.0-33751161268
27. Abrahamson DR,Wang R. Vize PD,Woolf AS,Bard JBLDevelopment of the glomerular capillary and its basement membraneThe Kidney: From Normal Development to Congenital DiseaseYear: 2003Sydney, AustraliaAcademic Press
28. Hinchliffe SA,Sargent PH,Howard CV,Chan YF,van Velzen D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and cavalieri principleLaboratory InvestigationYear: 19916467777842-s2.0-00258364932046329
29. De Curtis M,Rigo J. Nutrition and kidney in preterm infantJournal of Maternal-Fetal and Neonatal MedicineYear: 201225Supplement 1555922394021
30. Hughson M,Farris AB,Douglas-Denton R,Hoy WE,Bertram JF. Glomerular number and size in autopsy kidneys: the relationship to birth weightKidney InternationalYear: 2003636211321222-s2.0-003751336812753298
31. Manalich R,Reyes L,Herrera M,Melendi C,Fundora I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric studyKidney InternationalYear: 20005827707732-s2.0-003385447810916101
32. Hoy WE,Douglas-Denton RN,Hughson MD,Cass A,Johnson K,Bertram JF. A stereological study of glomerular number and volume: preliminary findings in a multiracial study of kidneys at autopsyKidney International, SupplementYear: 20036383S31S372-s2.0-003724861712864872
33. McNamara BJ,Diouf B,Douglas-Denton RN,Hughson MD,Hoy WE,Bertram JF. A comparison of nephron number, glomerular volume and kidney weight in Senegalese Africans and African AmericansNephrology Dialysis TransplantationYear: 2010255151415202-s2.0-77951689418
34. Douglas-Denton RN,McNamara BJ,Hoy WE,Hughson MD,Bertram JF. Does nephron number matter in the development of kidney disease?Ethnicity and DiseaseYear: 2006162, supplement 2S2S452-s2.0-3374603975016774009
35. Keller G,Zimmer G,Mall G,Ritz E,Amann K. Nephron number in patients with primary hypertensionThe New England Journal of MedicineYear: 200334821011082-s2.0-003742676012519920
36. Nyengaard JR,Bendtsen TF. Glomerular number and size in relation to age, kidney weight, and body surface in normal manAnatomical RecordYear: 199223221942012-s2.0-00265024171546799
37. Zimanyi MA,Hoy WE,Douglas-Denton RN,Hughson MD,Holden LM,Bertram JF. Nephron number and individual glomerular volumes in male Caucasian and African American subjectsNephrology Dialysis TransplantationYear: 2009248242824332-s2.0-67651102715
38. Hughson MD,Gobe GC,Hoy WE,Manning RD,Douglas-Denton R,Bertram JF. ssociations of glomerular number and birth weight with clinicopathological features of African Americans and whitesAmerican Journal of Kidney DiseasesYear: 200852118282-s2.0-4544909174918514988
39. Puelles VG,Hoy WE,Hughson MD,Diouf B,Douglas-Denton RN,Bertram JF. Glomerular number and size variability and risk for kidney diseaseCurrent Opinion in Nephrology and HypertensionYear: 20112017152-s2.0-7985150983821099687
40. Hinchliffe SA,Lynch MRJ,Sargent PH,Howard CV,Van Velzen D. The effect of intrauterine growth retardation on the development of renal nephronsBritish Journal of Obstetrics and GynaecologyYear: 19929942963012-s2.0-00265111961581274
41. Holland P,Davies DP,Merlet-Benichou C,Leroy B,Gilbert T,Lelievre-Pegorier M. Placental insufficiency and its effect on the fetus and adult diseaseThe LancetYear: 199334188488278282-s2.0-0027409569
42. Bains RK,Sibbons PD,Murray RD,Howard CV,Van Velzen D. Stereological estimation of the absolute number of glomeruli in the kidneys of lambsResearch in Veterinary ScienceYear: 19966021221252-s2.0-00300958568685532
43. Bauer R,Walter B,Ihring W,Kluge H,Lampe V,Zwiener U. Altered renal function in growth-restricted newborn pigletsPediatric NephrologyYear: 2000148-97357392-s2.0-003391332010955917
44. Bauer R,Walter B,Bauer K,Klupsch R,Patt S,Zwiener U. Intrauterine growth restriction reduces nephron number and renal excretory function in newborn pigletsActa Physiologica ScandinavicaYear: 2002176283902-s2.0-003640320612354166
45. Lucas SRR,Silva VLC,Miraglia SM,Gil FZ. Functional and morphometric evaluation of offspring kidney after intrauterine undernutritionPediatric NephrologyYear: 19971167197232-s2.0-00307028309438651
46. Ozaki T,Nishina H,Hanson MA,Poston L. Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspringJournal of PhysiologyYear: 20015301411522-s2.0-003477813411136866
47. Langley-Evans SC,Gardner DS,Jackson AA. Association of disproportionate growth of fetal rats in late gestation with raised systolic blood pressure in later lifeJournal of Reproduction and FertilityYear: 199610623073122-s2.0-00299712888699415
48. Langley-Evans SC,Welham SJM,Jackson AA. Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the ratLife SciencesYear: 199964119659742-s2.0-003352513110201645
49. Zimanyi M,Bertram JF,Black MJ. Does a nephron deficit in rats predispose to salt-sensitive hypertension?Kidney and Blood Pressure ResearchYear: 20042742392472-s2.0-464432332415273426
50. Zimanyi MA,Denton KM,Forbes JM,et al. A developmental nephron deficit in rats is associated with increased susceptibility to a secondary renal injury due to advanced glycation end-productsDiabetologiaYear: 20064948018102-s2.0-3364481660916496120
51. Hoppe CC,Evans RG,Moritz KM,et al. Combined prenatal and postnatal protein restriction influences adult kidney structure, function, and arterial pressureAmerican Journal of PhysiologyYear: 20072921R462R4692-s2.0-3384614180516973940
52. Moritz KM,Mazzuca MQ,Siebel AL,et al. Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female ratsJournal of PhysiologyYear: 2009587263526462-s2.0-6654910068419359373
53. Mitchell EKL,Louey S,Cock ML,Harding R,Black MJ. Nephron endowment and filtration surface area in the kidney after growth restriction of fetal sheepPediatric ResearchYear: 20045557697732-s2.0-194243762614973179
54. Gubhaju L,Sutherland MR,Yoder BA,Zulli A,Bertram JF,Black MJ. Is nephrogenesis affected by preterm birth? Studies in a non-human primate modelAmerican Journal of PhysiologyYear: 20092976F1668F16772-s2.0-7144908778719759270
55. Sutherland MR,Gubhaju L,Yoder BA,Stahlman MT,Black MJ. The effects of postnatal retinoic acid administration on nephron endowment in the preterm baboon kidneyPediatric ResearchYear: 20096543974022-s2.0-6534909196619092718
56. Zohdi V,Moritz KM,Bubb KJ,et al. Nephrogenesis and the renal renin-angiotensin system in fetal sheep: effects of intrauterine growth restriction during late gestationAmerican Journal of PhysiologyYear: 20072933R1267R12732-s2.0-3454844539717581839
57. Rodríguez MM,Gómez AH,Abitbol CL,Chandar JJ,Duara S,Zilleruelo GE. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infantsPediatric and Developmental PathologyYear: 20047117252-s2.0-194253467115255031
58. Stelloh C,Allen KP,Mattson DL,Lerch-Gaggl A,Reddy S,El-Meanawy A. Prematurity in mice leads to reduction in nephron number, hypertension, and proteinuriaTranslational ResearchYear: 20121592808922243792
59. Sutherland MR,Gubhaju L,Moore L,et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidneyJournal of the American Society of NephrologyYear: 2011227136513742-s2.0-7996014239621636639
60. Sutherland MR,Yoder BA,McCurnin D,et al. Effects of ibuprofen treatment on the developing preterm baboon kidneyAmerican Journal of PhysiologyYear: 20123021012861292
61. Gibson I,Downie T,More I,Lindop G. Atubular glomeruli and glomerular cysts—a possible pathway for nephron loss in the human kidney?Journal of PathologyYear: 19961794214268869291
62. Marcussen N. Atubular glomeruli and the structural basis for chronic renal failureLaboratory InvestigationYear: 19926632652842-s2.0-00265099601538583
63. Clark RH,Thomas P,Peabody J. Extrauterine growth restriction remains a serious problem in prematurely born neonatesPediatricsYear: 20031115 I9869902-s2.0-003796720812728076
64. Ehrenkranz RA. Growth outcomes of very low-birth weight infants in the newborn intensive care unitClinics in PerinatologyYear: 20002723253452-s2.0-003408211610863653
65. Hoy WE,Hughson MD,Diouf B,et al. Distribution of volumes of individual glomeruli in kidneys at autopsy: association with physical and clinical characteristics and with ethnic groupAmerican Journal of NephrologyYear: 201133supplement 115202-s2.0-7995879795221659730
66. Kriz W,Endlich K. Hypertrophy of podocytes: a mechanism to cope with increased glomerular capillary pressures?Kidney InternationalYear: 20056713733742-s2.0-1094425469915610265
67. D’Agati V. Pathologic classification of focal segmental glomerulosclerosisSeminars in NephrologyYear: 20032321171342-s2.0-003734939212704572
68. Satlin LM,Woda CB,Schwartz GJ. Vize PD,Woolf A,Bard JBLDevelopment of function in the metanephric kidneyThe Kidney: From Normal Development to Congenital DiseaseYear: 2003Sydney, Australia Academic Press
69. Blackburn S. Maternal, Fetal, and Neonatal Physiology—A Clinical PerspectiveYear: 20073rd editionSt Louis, Mo, USAElsevier
70. Rudolph AM. The changes in the circulation after birth. Their importance in congenital heart diseaseCirculationYear: 19704123433592-s2.0-00147371565412993
71. Rudolph AM,Heymann MA,Teramo KAW,Barrett CT,Raiha NCR. Studies on the circulation of the previable human fetusPediatric ResearchYear: 19715452465
72. Ratliff B,Rodebaugh J,Sekulic M,Solhaug M. Glomerular eNOS gene expression during postnatal maturation and AT1 receptor inhibitionPediatric NephrologyYear: 2007228113511422-s2.0-3454841142417437130
73. Huxley RR,Shiell AW,Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literatureJournal of HypertensionYear: 20001878158312-s2.0-003394203610930178
74. Cook NR,Cohen J,Hebert PR,Taylor JO,Hennekens CH. Implications of small reductions in diastolic blood pressure for primary preventionArchives of Internal MedicineYear: 199515577017092-s2.0-00289270467695458
75. White SL,Perkovic V,Cass A,et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studiesAmerican Journal of Kidney DiseasesYear: 200954224826119339091
76. Kistner A,Celsi G,Vanpee M,Jacobson SH. Increased blood pressure but normal renal function in adult women born pretermPediatric NephrologyYear: 2000153-42152202-s2.0-003363913411149114
77. Doyle LW,Faber B,Callanan C,Morley R. Blood pressure in late adolescence and very low birth weightPediatricsYear: 200311122522572-s2.0-003731311112563047
78. Keijzer-Veen MG,Finken MJJ,Nauta J,et al. Is blood pressure increased 19 years after intrauterine growth restriction and preterm birth? A prospective follow-up study in the NetherlandsPediatricsYear: 200511637257312-s2.0-3364461574216140714
79. Keijzer-Veen MG,Kleinveld HA,Lequin MH,et al. Renal function and size at young adult age after intrauterine growth restriction and very premature birthAmerican Journal of Kidney DiseasesYear: 20075045425512-s2.0-3454883657017900453
80. Johansson S,Iliadou A,Bergvall N,Tuvemo T,Norman M,Cnattingius S. Risk of high blood pressure among young men increases with the degree of immaturity at birthCirculationYear: 200511222343034362-s2.0-3364487429616301344
81. Hack M,Schluchter M,Cartar L,Rahman M. Blood pressure among very low birth weight (<1.5 kg) young adultsPediatric ResearchYear: 20055846776842-s2.0-2544447605716192252
82. Lawlor DA,Hübinette A,Tynelius P,Leon DA,Smith GD,Rasmussen F. Associations of gestational age and intrauterine growth with systolic blood pressure in a family-based study of 386,485 men in 331,089 familiesCirculationYear: 200711555625682-s2.0-3384688181917242278
83. Cooper R,Atherton K,Power C. Gestational age and risk factors for cardiovascular disease: evidence from the 1958 British birth cohort followed to mid-lifeInternational Journal of EpidemiologyYear: 20093812352442-s2.0-6014910208418658251
84. Siewert-Delle A,Ljungman S. The impact of birth weight and gestational age on blood pressure in adult life: a population-based study of 49-year-old menAmerican Journal of HypertensionYear: 1998118 I9469532-s2.0-00318698909715787
85. Stevenson CJ,West CR,Pharoah POD. Dermatoglyphic patterns, very low birth weight, and blood pressure in adolescenceArchives of Disease in ChildhoodYear: 2001841F18F222-s2.0-003517446411124918
86. Bonamy AKE,Martin H,Jörneskog G,Norman M. Lower skin capillary density, normal endothelial function and higher blood pressure in children born pretermJournal of Internal MedicineYear: 200726266356422-s2.0-3624896260017986202
87. Bonamy AKE,Bendito A,Martin H,Andolf E,Sedin G,Norman M. Preterm birth contributes to increased vascular resistance and higher blood pressure in adolescent girlsPediatric ResearchYear: 20055858458492-s2.0-2714452367916183828
88. Keijzer-Veen MG,Schrevel M,Finken MJJ,et al. Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardationJournal of the American Society of NephrologyYear: 2005169276227682-s2.0-3364479079315987756
89. Kwinta P,Klimek M,Drozdz D,et al. Assessment of long-term renal complications in extremely low birth weight childrenPediatric NephrologyYear: 2011267109511032-s2.0-7995319976521461881
90. Zaffanello M,Brugnara M,Bruno C,et al. Renal function and volume of infants born with a very low birth-weight: a preliminary cross-sectional studyActa Paediatrica, International Journal of PaediatricsYear: 2010998119211982-s2.0-77954359305
91. Bacchetta J,Harambat J,Dubourg L,et al. Both extrauterine and intrauterine growth restriction impair renal function in children born very pretermKidney InternationalYear: 20097644454522-s2.0-6824909829219516242
92. Dalziel SR,Parag V,Rodgers A,Harding JE. Cardiovascular risk factors at age 30 following pre-term birthInternational Journal of EpidemiologyYear: 20073649079152-s2.0-3454856398417468503
93. Rakow A,Johansson S,Legnevall L,et al. Renal volume and function in school-age children born preterm or small for gestational agePediatric NephrologyYear: 2008238130913152-s2.0-4694910057118491148
94. Iacobelli S,Loprieno S,Bonsante F,Latorre G,Esposito L,Gouyon JB. Renal function in early childhood in very low birthweight infantsAmerican Journal of PerinatologyYear: 200724105875922-s2.0-3644897825117972232
95. Rodríguez-Soriano J,Aguirre M,Oliveros R,Vallo A. Long-term renal follow-up of extremely low birth weight infantsPediatric NephrologyYear: 20052055795842-s2.0-2124447200015782301
96. Vanpee M,Blennow M,Linne T,Herin P,Aperia A. Renal function in very low birth weight infants: normal maturity reached during early childhoodJournal of PediatricsYear: 19921215 I7847882-s2.0-00264382681432434
97. Bianchi G,Fox U,Di Francesco GF. Blood pressure changes produced by kidney cross transplantation between spontaneously hypertensive rats and normotensive ratsClinical Science and Molecular MedicineYear: 19744754354482-s2.0-00162246634611680
98. Curtis JJ,Luke RG,Dustan HP,et al. Remission of essential hypertension after renal transplantationThe New England Journal of MedicineYear: 198330917100910156353230
99. Guidi E,Bianchi G,Rivolta E. Hypertension in man with a kidney transplant: role of familial versus other factorsNephronYear: 198541114212-s2.0-00218087233897886
100. Rettig R,Folberth CG,Stauss H,et al. Hypertension in rats induced by renal grafts from renovascular hypertensive donorsHypertensionYear: 19901544294352-s2.0-00252308182318524
101. Brenner BM,Garcia DL,Anderson S. Glomeruli and blood pressure. Less of one, more the other?American Journal of HypertensionYear: 1988143353472-s2.0-00237393183063284
102. Hoppe CC,Evans RG,Bertram JF,Moritz KM. Effects of dietary protein restriction on nephron number in the mouseAmerican Journal of PhysiologyYear: 20072925R1768R17742-s2.0-3424815810717272668
103. Ortiz LA,Quan A,Weinberg A,Baum M. Effect of prenatal dexamethasone on rat renal developmentKidney InternationalYear: 2001595166316692-s2.0-003505139211318936
104. Sahajpal V,Ashton N. Increased glomerular angiotensin II binding in rats exposed to a maternal low protein diet in uteroJournal of PhysiologyYear: 20055631932012-s2.0-1484433008515611024
105. Swali A,McMullen S,Langley-Evans SC. Prenatal protein restriction leads to a disparity between aortic and peripheral blood pressure in Wistar male offspringJournal of PhysiologyYear: 2010588380938182-s2.0-7795725317020693295
106. Wlodek ME,Westcott K,Siebel AL,Owens JA,Moritz KM. Growth restriction before or after birth reduces nephron number and increases blood pressure in male ratsKidney InternationalYear: 20087421871952-s2.0-4624910263518432184
107. Woods LL,Ingelfinger JR,Nyengaard JR,Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in ratsPediatric ResearchYear: 2001494 I4604672-s2.0-003506933911264427
108. Woods LL. Maternal nutrition and predisposition to later kidney diseaseCurrent Drug TargetsYear: 2007889069132-s2.0-3454846212717691927
109. Woods LL,Weeks DA,Rasch R. Programming of adult blood pressure by maternal protein restriction: role of nephrogenesisKidney InternationalYear: 2004654133913482-s2.0-164254518715086473
110. Querfeld U,Niaudet P. Nephron number and primary hypertensionThe New England Journal of MedicineYear: 200334817171717192-s2.0-024258227612713000
111. Tonkiss J,Trzcińska M,Galler JR,Ruiz-Opazo N,Herrera VLM. Prenatal malnutrition-induced changes in blood pressure dissociation of stress and nonstress responses using radiotelemetryHypertensionYear: 19983211081142-s2.0-03454043499674646
112. Johnson RJ,Segal MS,Srinivas T,et al. Essential hypertension, progressive renal disease, and uric acid: a pathogenetic link?Journal of the American Society of NephrologyYear: 2005167190919192-s2.0-2774460800315843466
113. Hoy WE,Hughson MD,Bertram JF,Douglas-Denton R,Amann K. Nephron number, hypertension, renal disease, and renal failureJournal of the American Society of NephrologyYear: 2005169255725642-s2.0-3254445583216049069
114. Black MJ,Briscoe TA,Constantinou M,Kett MM,Bertram JF. Is there an association between level of adult blood pressure and nephron number or renal filtration surface area?Kidney InternationalYear: 20046525825882-s2.0-164252079114717928
115. Black MJ,Wang Y,Bertram JF. Nephron endowment and renal filtration surface area in young spontaneously hypertensive ratsKidney and Blood Pressure ResearchYear: 200225120262-s2.0-003616980111834873
116. Hostetter TH. Hyperfiltration and glomerulosclerosisSeminars in NephrologyYear: 20032321941992-s2.0-003734937312704579
117. Hostetter TH,Olson JL,Rennke HG,Venkatachalam MA,Brenner BM. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablationThe American Journal of PhysiologyYear: 19812411F85F932-s2.0-179444023787246778
118. Nenov VD,Taal MW,Sakharova OV,Brenner BM. Multi-hit nature of chronic renal diseaseCurrent Opinion in Nephrology and HypertensionYear: 20009285972-s2.0-003401431010757212
119. Plank C,Nüsken KD,Menendez-Castro C,et al. Intrauterine growth restriction following ligation of the uterine arteries leads to more severe glomerulosclerosis after mesangioproliferative glomerulonephritis in the offspringAmerican Journal of NephrologyYear: 20103242872952-s2.0-7795554287920714134
120. Vlassara H,Palace MR. Diabetes and advanced glycation endproductsJournal of Internal MedicineYear: 20022512871012-s2.0-003616720811905595
121. Silveiro SP,Da Costa LA,Beck MO,Gross JL. Urinary albumin excretion rate and glomerular filtration rate in single- kidney type 2 diabetic patientsDiabetes CareYear: 1998219152115242-s2.0-35429944349727902
122. Lim K,Lombardo P,Schneider-Kolsky M,Hilliard L,Denton KM,Jane Black M. Induction of hyperglycemia in adult intrauterine growth-restricted rats: effects on renal functionAmerican Journal of PhysiologyYear: 20113012F288F2942-s2.0-7996113245721511698
123. Jones SE,Bilous RW,Flyvbjerg A,Marshall SM. Intra-uterine environment influences glomerular number and the acute renal adaptation to experimental diabetesDiabetologiaYear: 20014467217282-s2.0-003484928311440365
124. Augustyniak RA,Singh K,Zeldes D,Singh M,Rossi NF. Maternal protein restriction leads to hyperresponsiveness to stress and salt-sensitive hypertension in male offspringAmerican Journal of PhysiologyYear: 20102985R1375R13822-s2.0-7795170487420200128

Article Categories:
  • Review Article


Previous Document:  Mechanisms of Resistance to Epidermal Growth Factor Receptor Inhibitors and Novel Therapeutic Strate...
Next Document:  Relationships between Social Resources and Healthful Behaviors across the Age Spectrum.