Document Detail


Long-term storage and impedance-based water toxicity testing capabilities of fluidic biochips seeded with RTgill-W1 cells.
MedLine Citation:
PMID:  22469871     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Rainbow trout gill epithelial cells (RTgill-W1) are used in a cell-based biosensor that can respond within one hour to toxic chemicals that have the potential to contaminate drinking water supplies. RTgill-W1 cells seeded on enclosed fluidic biochips and monitored using electric cell-substrate impedance sensing (ECIS) technology responded to 18 out of the 18 toxic chemicals tested within one hour of exposure. Nine of these chemical responses were within established concentration ranges specified by the U.S. Army for comparison of toxicity sensors for field application. The RTgill-W1 cells remain viable on the biochips at ambient carbon dioxide levels at 6°C for 78weeks without media changes. RTgill-W1 biochips stored in this manner were challenged with 9.4μM sodium pentachlorophenate (PCP), a benchmark toxicant, and impedance responses were significant (p<0.001) for all storage times tested. This poikilothermic cell line has toxicant sensitivity comparable to a mammalian cell line (bovine lung microvessel endothelial cells (BLMVECs)) that was tested on fluidic biochips with the same chemicals. In order to remain viable, the BLMVEC biochips required media replenishments 3 times per week while being maintained at 37°C. The ability of RTgill-W1 biochips to maintain monolayer integrity without media replenishments for 78weeks, combined with their chemical sensitivity and rapid response time, make them excellent candidates for use in low cost, maintenance-free field-portable biosensors.
Authors:
Linda M Brennan; Mark W Widder; Lucy E J Lee; William H van der Schalie
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-3-24
Journal Detail:
Title:  Toxicology in vitro : an international journal published in association with BIBRA     Volume:  -     ISSN:  1879-3177     ISO Abbreviation:  -     Publication Date:  2012 Mar 
Date Detail:
Created Date:  2012-4-3     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8712158     Medline TA:  Toxicol In Vitro     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012. Published by Elsevier Ltd.
Affiliation:
US Army Center for Environmental Health Research, Fort Detrick, MD, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  AgGaSe(2) thin films grown by chemical close-spaced vapor transport for photovoltaic applications: s...
Next Document:  Patient Registry of Outcomes in Spasticity Care.