Document Detail


Long-term in vivo imaging of viscoelastic properties of the mouse brain after controlled cortical impact.
MedLine Citation:
PMID:  23534701     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Traumatic brain injury (TBI) presents a variety of causes and symptoms, thus making the development of reliable diagnostic methods and therapeutic treatments challenging. Magnetic resonance elastography (MRE) is a technique that allows for a noninvasive assessment of the mechanical properties of soft biological tissue, such as tissue stiffness, storage modulus, and loss modulus. Importantly, by quantifying the changes in the stiffness of tissue that is often associated with disease, MRE is able to detect tissue pathologies at early stages. Recent improvements in instrumentation have allowed for the investigation of small samples with microscopic resolution (μMRE). We hypothesize that μMRE can sensitively detect variations in micromechanical properties in the brain caused by the compressive and shearing forces sustained during TBI. To test this hypothesis, we randomized 13 C57BL mice to receive a controlled cortical impact at a 0.5 mm or 0.75 mm depth, with both sham and naïve mice as controls. Our objective was to propagate mechanical shear waves throughout the brain for in vivo TBI μMRE imaging. The mechanical properties of the injured brain tissue were determined at days 0, 1, 7, and 28 post-injury. For both groups, we observed a significant drop in the stiffness of the impacted region immediately following the injury; the 0.75 mm animals experienced increased tissue softness that lasted longer than that for the 0.5 mm group. Although the shear stiffness, storage modulus, and loss modulus parameters all followed the same trend, the tissue stiffness yielded the most statistically significant results. Overall, this article introduces a transformative technique for mechanically mapping the brain and detecting brain diseases and injury.
Authors:
Thomas Boulet; Matthew L Kelso; Shadi F Othman
Publication Detail:
Type:  Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't     Date:  2013-08-01
Journal Detail:
Title:  Journal of neurotrauma     Volume:  30     ISSN:  1557-9042     ISO Abbreviation:  J. Neurotrauma     Publication Date:  2013 Sep 
Date Detail:
Created Date:  2013-08-19     Completed Date:  2014-04-08     Revised Date:  2014-09-02    
Medline Journal Info:
Nlm Unique ID:  8811626     Medline TA:  J Neurotrauma     Country:  United States    
Other Details:
Languages:  eng     Pagination:  1512-20     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Animals
Brain Injuries / physiopathology,  ultrasonography*
Cerebral Cortex / injuries*,  physiology,  ultrasonography*
Elasticity* / physiology
Elasticity Imaging Techniques / methods,  trends*
Male
Mice
Mice, Inbred C57BL
Random Allocation
Time Factors
Viscosity
Grant Support
ID/Acronym/Agency:
RR021937/RR/NCRR NIH HHS
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Acral Peeling Skin Syndrome Resulting from a Homozygous Nonsense Mutation in the CSTA Gene Encoding ...
Next Document:  Cervi cornus Colla (deer antler glue) induce epidermal differentiation in the reconstruction of skin...