Document Detail

Local hemodynamics dictate long-term dendritic plasticity in peri-infarct cortex.
MedLine Citation:
PMID:  20962232     Owner:  NLM     Status:  In-Process    
Changes in dendritic spine turnover are a major mechanism of experience-dependent plasticity in the adult neocortex. Dendritic spine plasticity may also contribute to functional recovery after stroke, but in that setting its expression may be complicated by alterations in local tissue perfusion, especially around the infarct. Using adult Thy-1 GFP-M mice, we simultaneously recorded long-term spine dynamics in apical dendrites from layer 5 pyramidal cells and blood flow from surrounding capillaries with in vivo two-photon microscopy in peri-infarct cortex before and after unilateral middle cerebral artery occlusion. Blood flow in peri-infarct cortex decreased significantly immediately after stroke and improved gradually over time, in a distance-dependent manner from the epicenter of the infarct. However, local tissue perfusion was never fully restored even after a 3 month recovery period. On average, surviving layer 5 pyramidal neurons experienced a ∼20% decrease in spine density acutely after stroke but eventually recovered. The dynamics of this improvement were different depending on the degree of tissue perfusion acutely after arterial occlusion. Cells in ischemic areas closer to the infarct returned to normal spine density levels slowly by retaining spines, while cells in more remote regions with preserved blood flow recovered faster by adding more spines, eventually surpassing baseline spine density by 15%. Our data suggest that maintaining tissue perfusion in the area surrounding the infarct could hasten or augment synaptic plasticity and functional recovery after stroke.
Ricardo Mostany; Tara G Chowdhury; David G Johnston; Shiva A Portonovo; S Thomas Carmichael; Carlos Portera-Cailliau
Publication Detail:
Type:  Journal Article; Research Support, N.I.H., Extramural    
Journal Detail:
Title:  The Journal of neuroscience : the official journal of the Society for Neuroscience     Volume:  30     ISSN:  1529-2401     ISO Abbreviation:  J. Neurosci.     Publication Date:  2010 Oct 
Date Detail:
Created Date:  2010-10-21     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8102140     Medline TA:  J Neurosci     Country:  United States    
Other Details:
Languages:  eng     Pagination:  14116-26     Citation Subset:  IM    
Departments of Neurology and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Medial dorsal hypothalamus mediates the inhibition of reward seeking after extinction.
Next Document:  Learning alters the tuning of functional magnetic resonance imaging patterns for visual forms.