Document Detail

Local and global effects of neck muscle vibration during stabilization of upright standing.
MedLine Citation:
PMID:  21442219     Owner:  NLM     Status:  MEDLINE    
Neck muscle vibration (NMV) during upright standing is known to induce forward leaning, which has been explained as a global response to the (illusory) perception of a lengthening of the dorsal neck muscles. However, the effects of NMV both at the level of individual joints and on whole-body postural coordination, and its potential modulation by vision, have not yet been analyzed in detail. Eight healthy young adult participants completed a total of ten trials each, with a 10-s period of unperturbed standing followed by a 10-s period of NMV. Participants were instructed to stand "as still as possible". This postural task was executed under two visual conditions: eyes open (EO) and eyes closed (EC). Postural responses were measured in terms of center of pressure (CoP) and center of mass (CoM) profiles, and whole-body kinematics. Responses to NMV at the level of individual body segments and joints were assessed by decomposing the time series into linear trends and residual fluctuations. Inter-segmental coordination was analyzed using a decorrelation technique, assessing motor-equivalent stabilization of four task-related variables: CoM position, trunk orientation, as well as head position and orientation. NMV induced a general forward leaning response under both visual conditions, visible in CoP, CoM, segment positions and orientations. Locally, NMV induced a pronounced extension of the atlanto-occipital joint. Residual fluctuations were higher with EC and unaffected by NMV. Coordination analysis showed that stabilization of different body parts was differentially affected by NMV. Head orientation was consistently stabilized across all conditions, with weaker coordination in the EC condition. In contrast, motor-equivalent stabilization of CoM and head position, and trunk orientation was only observed during no-vibration periods. Taken together, our results demonstrate specific effects of vision and proprioception on different aspects of local and global postural control. While perturbed neck proprioception seemed to affect the postural "set point" (inducing forward leaning), vision appeared to mainly serve in noise reduction (residual fluctuations) and control of head orientation.
Julius Verrel; Rémy Cuisinier; Ulman Lindenberger; Nicolas Vuillerme
Related Documents :
25278859 - Visual mismatch negativity: a predictive coding view.
25375239 - Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale n...
25235679 - Underwater sound from pile driving, what is it and why does it matter.
24146569 - First records and description of metallic red females of euglossa (alloglossura) gorgon...
16729079 - Sensitive high-resolution white-light schlieren technique with a large dynamic range fo...
24344549 - Colour detection thresholds in faces and colour patches.
18434049 - Effect of masker modulation depth on speech masking release.
5070519 - Self-stimulation in the ventromedial hypothalamus.
12642179 - Gaze during visually-guided locomotion in cats.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2011-03-26
Journal Detail:
Title:  Experimental brain research     Volume:  210     ISSN:  1432-1106     ISO Abbreviation:  Exp Brain Res     Publication Date:  2011 Apr 
Date Detail:
Created Date:  2011-03-30     Completed Date:  2012-03-06     Revised Date:  2013-12-13    
Medline Journal Info:
Nlm Unique ID:  0043312     Medline TA:  Exp Brain Res     Country:  Germany    
Other Details:
Languages:  eng     Pagination:  313-24     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Feedback, Sensory / physiology*
Neck Muscles / physiology*
Postural Balance / physiology*
Psychomotor Performance / physiology*
Young Adult

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Spatial and temporal aspects of cognitive influences on smooth pursuit.
Next Document:  Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristic...