Document Detail

Lipoteichoic acid induces surfactant protein-A biosynthesis in human alveolar type II epithelial cells through activating the MEK1/2-ERK1/2-NF-κB pathway.
Jump to Full Text
MedLine Citation:
PMID:  23031213     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: Lipoteichoic acid (LTA), a gram-positive bacterial outer membrane component, can cause septic shock. Our previous studies showed that the gram-negative endotoxin, lipopolysaccharide (LPS), could induce surfactant protein-A (SP-A) production in human alveolar epithelial (A549) cells.
OBJECTIVES: In this study, we further evaluated the effect of LTA on SP-A biosynthesis and its possible signal-transducing mechanisms.
METHODS: A549 cells were exposed to LTA. Levels of SP-A, nuclear factor (NF)-κB, extracellular signal-regulated kinase 1/2 (ERK1/2), and mitogen-activated/extracellular signal-regulated kinase kinase (MEK)1 were determined.
RESULTS: Exposure of A549 cells to 10, 30, and 50 μg/ml LTA for 24 h did not affect cell viability. Meanwhile, when exposed to 30 μg/ml LTA for 1, 6, and 24 h, the biosynthesis of SP-A mRNA and protein in A549 cells significantly increased. As to the mechanism, LTA enhanced cytosolic and nuclear NF-κB levels in time-dependent manners. Pretreatment with BAY 11-7082, an inhibitor of NF-κB activation, significantly inhibited LTA-induced SP-A mRNA expression. Sequentially, LTA time-dependently augmented phosphorylation of ERK1/2. In addition, levels of phosphorylated MEK1 were augmented following treatment with LTA.
CONCLUSIONS: Therefore, this study showed that LTA can increase SP-A synthesis in human alveolar type II epithelial cells through sequentially activating the MEK1-ERK1/2-NF-κB-dependent pathway.
Authors:
Feng-Lin Liu; Chi-Yuan Chuang; Yu-Ting Tai; Hsiu-Lien Tang; Tyng-Guey Chen; Ta-Liang Chen; Ruei-Ming Chen
Related Documents :
23352233 - Cdk8 kinase phosphorylates transcription factor stat1 to selectively regulate the inter...
23416263 - Cerium oxide nanoparticles induce cytotoxicity in human hepatoma smmc-7721 cells via ox...
15906163 - A strategy to identify stable membrane-permeant peptide inhibitors of myosin light chai...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2012-10-03
Journal Detail:
Title:  Respiratory research     Volume:  13     ISSN:  1465-993X     ISO Abbreviation:  Respir. Res.     Publication Date:  2012  
Date Detail:
Created Date:  2012-11-08     Completed Date:  2013-04-19     Revised Date:  2013-07-11    
Medline Journal Info:
Nlm Unique ID:  101090633     Medline TA:  Respir Res     Country:  England    
Other Details:
Languages:  eng     Pagination:  88     Citation Subset:  IM    
Affiliation:
Department of Anesthesiology, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Cell Culture Techniques
Cell Survival / drug effects
Humans
Immunoblotting
Lipopolysaccharides / pharmacology*
Mitogen-Activated Protein Kinase 1 / metabolism*
Mitogen-Activated Protein Kinase 3 / metabolism*
NF-kappa B / metabolism*
Pneumocytes / drug effects,  metabolism*
Pulmonary Surfactant-Associated Protein A / biosynthesis*
Real-Time Polymerase Chain Reaction
Signal Transduction
Teichoic Acids / pharmacology*
Chemical
Reg. No./Substance:
0/Lipopolysaccharides; 0/NF-kappa B; 0/Pulmonary Surfactant-Associated Protein A; 0/Teichoic Acids; 56411-57-5/lipoteichoic acid; EC 2.7.11.24/Mitogen-Activated Protein Kinase 1; EC 2.7.11.24/Mitogen-Activated Protein Kinase 3
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Respir Res
Journal ID (iso-abbrev): Respir. Res
ISSN: 1465-9921
ISSN: 1465-993X
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2012 Liu et al.; licensee BioMed Central Ltd.
open-access:
Received Day: 7 Month: 6 Year: 2012
Accepted Day: 1 Month: 10 Year: 2012
Print publication date: Year: 2012
Electronic publication date: Day: 3 Month: 10 Year: 2012
Volume: 13 Issue: 1
First Page: 88 Last Page: 88
PubMed Id: 23031213
ID: 3492077
Publisher Id: 1465-9921-13-88
DOI: 10.1186/1465-9921-13-88

Lipoteichoic acid induces surfactant protein-A biosynthesis in human alveolar type II epithelial cells through activating the MEK1/2-ERK1/2-NF-κB pathway
Feng-Lin Liu1 Email: nepton27@hotmail.com
Chi-Yuan Chuang2 Email: DAJ95@tpech.gov.tw
Yu-Ting Tai1 Email: tyt@w.tmu.edu.tw
Hsiu-Lien Tang3 Email: t106sw208712@gmail.com
Tyng-Guey Chen1 Email: ctg@tmu.edu.tw
Ta-Liang Chen4 Email: tlc@tmu.edu.tw
Ruei-Ming Chen456 Email: rmchen@tmu.edu.tw
1Department of Anesthesiology, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
2Division of Pulmonology, Department of Internal Medicine, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan
3Department of Rehabilitation, Po-Jen General Hospital, Taipei, Taiwan
4Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan
5Graduate Institute of Medical Sciences; Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan
6Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan

Background

Sepsis can lead to multiorgan failure and death and appears to be triggered by bacterial products, such as lipopolysaccharide (LPS) from gram-negative bacteria and lipoteichoic acid (LTA) from gram-positive ones [1-3]. Infection of the respiratory tract caused by gram-positive bacteria and pneumonia combined with acute lung injury (ALI) are usually the leading causes of mortality by sepsis [4]. In the past few decades, the incidences of sepsis and septic shock have been increasing [5]. Although endotoxin-activated events are clearly important in gram-negative infection, gram-positive bacteria also have crucial roles, but less is known about host responses to them [6]. The increasing prevalence of sepsis from gram-positive bacterial pathogens necessitates a reevaluation of the basic assumptions about the molecular pathogenesis of ALI.

Alveolar epithelial type II cells contribute to the maintenance of mucosal integrity by modulating the production of surfactants [7]. Pulmonary surfactants play important roles in protecting the lung during endotoxin-induced injury and infection [8,9]. Surfactant protein (SP)-A is the most abundant pulmonary surfactant protein. Levels of SP-A in bronchiolar lavage fluid are modulated in gram-negative or -positive bacteria-caused lung diseases, including severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema [10]. Thus, altering lung SP-A levels can be an effective indicator for pulmonary infection and inflammation. Our previous study showed that LPS selectively induced spa gene expression in human alveolar epithelial A549 cells [11].

LTA, an outer membrane component of gram-positive bacteria, was shown to be one of the critical factors participating in the pathogenesis of sepsis [12,13]. LTA can stimulate inflammatory responses in the lung [14,15]. Therefore, understanding the mechanisms that regulate LTA-mediated cell activation is crucial for diagnosis, treatment, or prognosis of lung inflammatory diseases. In response to stimuli, LTA can activate macrophages to produce massive amounts of inflammatory factors that exhibit systemic effects in the general circulation [16]. LTA can induce the secretion of various cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α [17]. These data suggest that LTA can selectively modify gene transcription of various cell types and sequentially augment and possibly initiate tissue inflammation.

Mitogen-activated protein kinases (MAPKs) are serine/threonine kinases. The first MAPK isoforms to be cloned and characterized were the extracellular signal-regulated kinase 1 and 2 (ERK 1/2) [18,19]. ERK 1/2 are well documented to be activated by a family of dual-specificity kinases known as the mitogen-activated/ERK kinases (MEKs) [16,20]. A previous study demonstrated that LTA can selectively activate the ERK pathway in the cornea [21]. Our previous study showed that LTA induced TNF-α and IL-6 expressions by means of stimulating phosphorylation of ERK1/2 in macrophages [16]. In addition, LTA also triggered translocation of nuclear factor (NF)-κB from the cytoplasm to nuclei and its transactivation activity. Meanwhile, the mechanisms responsible for LTA-induced spa gene expression in alveolar epithelial cells are still unknown. In this study, we attempted to evaluate the effects of LTA on SP-1 synthesis in human alveolar type II epithelial cells and its possible mechanisms.


Materials and methods
Cell culture and drug treatment

A human lung carcinoma type II epithelial cell line (A549) was cultured following a previous method [3]. A549 cells were grown in Dulbecco's modified Eagle's medium (DMEM)/Ham’s F12 culture medium (Sigma, St. Louis, MO, USA), supplemented with 10% (v/v) heat-inactivated fetal calf serum, 100 U/ml penicillin G, 100 μg/ml streptomycin, and 2 mM l-glutamine. A549 cells were seeded in 75-cm2 culture flasks at 37 °C in a humidified atmosphere of 5% CO2. Cells were grown to confluence before drug treatment. LTA purchased from Sigma was dissolved in phosphate-buffered saline (PBS) (0.14 M NaCl, 2.6 mM KCl, 8 mM Na2HPO4, and 1.5 mM KH2PO4). BAY 11–7082, an inhibitor of NF-κB activation, was also purchased from Sigma.

Assay of cell viability

Cell viability was determined using a colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay as previously described [22]. Briefly, A549 cells (104 cells/well) were seeded in 96-well tissue culture plates overnight. After drug treatment, macrophages were cultured in new medium containing 0.5 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide for a further 3 h. The blue formazan products in the macrophages were dissolved in dimethyl sulfoxide and spectrophotometrically measured at a wavelength of 550 nm.

Immunoblotting analyses of SP-A, NF-κB, and phosphorylated and non-phosphorylated ERK1/2 and MEK1

Protein levels were immunodetected according to a previously described method [11]. After drug treatment, cell lysates were prepared in ice-cold radioimmunoprecipitation assay buffer (25 mM Tris–HCl (pH 7.2), 0.1% sodium dodecylsulfate (SDS), 1% Triton X-100, 1% sodium deoxycholate, 0.15 M NaCl, and 1 mM EDTA). Protein concentrations were quantified using a bicinchonic acid protein assay kit (Pierce, Rockford, IL, USA). Proteins (50 μg/well) were subjected to sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose membranes. Immunodetection of SP-A and NF-κB was carried out using rabbit polyclonal antibodies against human SP-A and NF-κB (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Cellular β-actin protein was immunodetected using a mouse monoclonal antibody (mAb) against mouse β-actin (Sigma) as the internal standard. These protein bands were quantified using a digital imaging system (UVtec, Cambridge, UK). Phosphorylated ERK1/2 and MEK1 were immunodetected using a rabbit polyclonal antibody against phosphorylated residues of ERK1/2 and MEK1 (Cell Signaling, Danvers, MA, USA). Nonphosphorylated ERK2 and MEK1 were immunodetected as the internal controls (Cell Signaling). Intensities of the immunoreactive bands were determined using a digital imaging system (Wallac Victor 1420, PerkinElmer, Melbourne, Australia).

Extraction of nuclear proteins and immunodetection

Amounts of nuclear transcription factors were quantified following a previously described method [20]. After drug treatment, nuclear extracts of macrophages were prepared. Protein concentrations were quantified by a bicinchonic acid protein assay kit (Pierce, Rockford, IL, USA). Nuclear proteins (50 μg/well) were subjected to SDS-PAGE and transferred to nitrocellulose membranes. After blocking, NF-κB was immunodetected using a rabbit polyclonal antibody against mouse NF-κB p65 (Santa Cruz Biotechnology). A proliferating cell nuclear antigen (PCNA) was detected using a mouse mAb against the rat PCNA protein (Santa Cruz Biotechnology) as the internal standard. Intensities of the immunoreactive bands were determined using a digital imaging system (Wallac Victor 1420, PerkinElmer).

Real-time polymerase chain reaction (PCR) assays

Messenger (m)RNA from A549 cells exposed to LTA were prepared for real-time PCR analyses of SP-A mRNA and β-actin mRNA. Oligonucleotides for the PCR analyses of SP-A mRNA and β-actin mRNA were designed and synthesized by Clontech Laboratories (Palo Alto, CA, USA). The oligonucleotide sequences of the upstream and downstream primers for these mRNA analyses were respectively 5'-TGA AAGGGAGTTCTAGCATCTCACAGA-3' and 5'-ACATATGCCTATGTAGGCCTGACTGAG-3' for SP-A mRNA, and 5'- GTCTACATGTCTCGATCCCACTTA A -3' and 5'-GGTCTTTCTCTCTCATCGCGCTC-5' for β-actin mRNA. A quantitative PCR analysis was carried out using iQSYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and the MyiQ Single-Color Real-Time PCR Detection System (Bio-Rad) as described previously [11].

Statistical analysis

Statistical differences were considered significant when the p value of Duncan’s multiple-range test was <0.05. Statistical analysis between groups over time was carried out by a two-way analysis of variance (ANOVA).


Results
Toxicity of LTA to A549 cells

Cell morphology and viability were assayed to evaluate the toxicity of LTA to human alveolar epithelial A549 cells. Exposure of A549 cells to 10, 30, and 50 μg/ml LTA for 24 h did not affect cell viability (data not shown). When exposed to 30 μg/ml LTA for 1, 6, and 24 h, the viability of A549 cells was not influenced. Exposure of A549 cells to 30 μg/ml LTA for 1, 6, and 24 h did not alter cell morphology (data not shown).

LTA-induced enhancement of SP-A biosynthesis in A549 cells

The effects of LTA on SP-A levels in A549 cells were evaluated by an immunoblotting analysis (Figure 1). In untreated A549 cells, low levels of SP-A were immunodetected (Figure 1A, top panel, lane 1). After exposure to 30 μg/ml LTA for 1 h, levels of SP-A were found to be augmented (lane 2). When treated for 6 and 24 h, LTA obviously increased amounts of SP-A in A549 cells. β-Actin was immunodetected (Figure 1A, bottom panel). These immunorelated protein bands were quantified and analyzed (Figure 1B). Exposure of A549 cells to 30 μg/ml LTA for 1, 6, and 24 h respectively caused significant 176%, 230%, and 270% increases in SP-A levels.

LTA-induced SP-A mRNA expression in A549 cells

Induction of SP-A mRNA expression by LTA was quantified using a real-time PCR analysis (Figure 2). After exposure to LTA for 1 h, the levels of SP-A mRNA in A549 cells were increased by 2.1-fold. Exposure of A549 cells to LTA for 6 and 24 h caused 2.8- and 3.7-fold increases in the levels of SP-A mRNA, respectively (Figure 2). Pretreatment of A549 cells with BAY 11–7082, an inhibitor of NF-κB activation, for 1 h did not change SP-A mRNA expression (data not shown). However, BAY 11–7082 significantly inhibited LTA-induced SP-A mRNA production by 70% (Figure 2).

Augmentation of NF-κB expression and translocation by LTA

Mechanisms of LTA-induced SP-A augmentation were evaluated by analyses of NF-κB expression and translocation (Figures 3 and 4). Exposure of A549 cells to LTA for 1 h enhanced levels of cytosolic NF-κB (Figure 3A, top panel, lane 1). After treatment for 6 and 24 h, the expression of cytosolic NF-κB was obviously augmented (lanes 3 and 4). β-Actin was immunodetected (Figure 3A, bottom panel). These immunorelated protein bands were quantified and analyzed (Figure 3B). Exposure of A549 cells to LTA for 1, 6, and 24 h significantly increased NF-κB production by 181%, 200%, and 230%, respectively.

Treatment of A549 cells with LTA for 1 h increased levels of nuclear NF-κB (Figure 4A, top panel, lane 2). When exposed for 6 and 24 h, translocation of NF-κB from the cytoplasm to nuclei notably increased (lanes 3 and 4). Amounts of PCNA in A549 cells were immunodetected (Figure 4A, bottom panel). These immunorelated protein bands were quantified and analyzed (Figure 4B). Exposure of A549 cells to LTA for 1, 6, and 24 h respectively caused significant 176%, 340%, 530% enhancements in levels of nuclear NF-κB.

LTA-enhanced phosphorylation of ERK1/2

The reason why LTA improved NF-κB activation was further investigated by assaying ERK1/2 phosphorylation (Figure 5). Treatment of A549 cells with LTA for 1 h increased the amounts of phosphorylated ERK1/2 (Figure 5A, top panel, lane 2). Levels of phosphorylated ERK1/2 in A549 cells were obviously raised after exposure to LTA for 6 and 24 h (lanes 3 and 4). Amounts of β-actin in A549 cells were immunodetected (Figure 5A, bottom panel). These immunorelated protein bands were quantified and analyzed (Figure 5B). Exposure of A549 cells to LTA for 1, 6, and 24 h significantly increased ERK1 phosphorylation by 259%, 170%, and 334%, respectively. In comparison, levels of phosphorylated ERK2 were respectively augmented by 8.2-, 6.4-, and 7.8-fold following LTA administration for 1, 6, and 24 h (Figure 5B).

LTA-induced activation of MEK1

Phosphorylation of MEK1 was assayed to determine the mechanism of LTA-induced ERK1/2 activation (Figure 6). Low levels of phosphorylated MEK1 were detected in untreated A549 cells (Figure 6A, top panel, lane 1). However, exposure of A549 cells to LTA for 1 h stimulated MEK1 phosphorylation (lane 2). After exposure for 6 and 24 h, the amounts of phosphorylated MEK1 had obviously increased (lanes 3 and 4). β-actin in A549 cells was immunodetected (Figure 6A, bottom panel). These immunorelated protein bands were quantified and analyzed (Figure 6B). Treatment of A549 cells with LTA for 1, 6, and 24 h respectively caused significant 82%, 330%, and 370% increases in levels of phosphorylated MEK1.


Discussion

LTA represents a class of amphiphilic molecules anchored to the outer face of the cytoplasmic membrane in gram-positive bacteria and is commonly released during cell growth, especially under antibiotic therapy [1,2]. It can cause cytokine induction in mononuclear phagocytes [17]. In previous studies, LTA concentrations of 0.2~50 μg/ml were detected and stimulated activity of polymononuclear leucocyte functions and release of TNF-α in peripheral blood mononuclear cells [23,24]. Meanwhile, LTA levels at the infectious site can reach a high level of 26,694 ng/mL [25]. The concentration of LTA used in this study was < 50 μg/ml. Therefore, our results show that LTA at clinically relevant concentrations can activate alveolar type II epithelial cells by stimulating production of surfactants.

During bacterial infection, endotoxins, including LTA and LPS, increase capillary permeability and enhance expressions of cellular adhesion molecules, proinflammatory cytokines, and chemokines [1,15]. These endotoxins can lead to most of the clinical manifestations of bacterial infection and are associated with ALI [4,5]. In addition, LTA can trigger lung inflammation and causes neutrophil influx into the lungs [15,26]. This study showed that in response to LTA stimulation, levels of SP-A mRNA and protein in alveolar A549 cells were time-dependently augmented. SP-A contributes to the pulmonary host defense [10,16,27]. A previous study reported that when spa gene expression was knocked-out, susceptibility of the lungs to pathogenic infection was simultaneously raised [28]. Our previous study also showed that LPS-mediated toll-like receptor (TLR) 2 signaling in human alveolar epithelial cells might increase SP-A biosynthesis and subsequently lead to an inflammatory response in the lungs [3]. As a result, SP-A could be an effective biomarker for detecting pulmonary infection by gram-negative or -positive bacteria.

This study showed that LTA increased the expression of NF-κB and its translocation from the cytoplasm to nuclei. NF-κB is a typical transcription factor in response to stimulation by LTA [16]. LTA can bind CD14 and then stimulates TLR activation [16,29]. After LTA associates with TLR2, NF-κB can be activated by protein kinases and is then translocated to nuclei from the cytoplasm [11]. NF-κB regulates certain gene expressions to control cell proliferation, differentiation, and death [30,31]. A previous study showed that LTA induced cyclooxygenase-2 expression in epithelial cells via IκB degradation and successive p65 NF-κB translocation [32]. LTA could induce SP-A mRNA expression in A549 cells. Our bioinformatic search revealed that NF-κB-DNA-binding motifs were found in the promoter regions of the spa gene. Suppressing NF-κB activation using BAY 11–7082 simultaneously inhibited LTA-induced SP-A mRNA expression. Thus, LTA transcriptionally induces SP-A expression through inducing NF-κB expression and translocation.

Our present results revealed that the phosphorylation of ERK1/2 was associated with NF-κB activation. Sequentially, ERK1/2-activated IκBα kinase can phosphorylate IκB at two conserved serine residues in the N-terminus, triggering the degradation of this inhibitor and allowing for the rapid translocation of NF-κB into nuclei [16,20]. Accordingly, LTA-induced activation of A549 cells is mainly due to the improvement in ERK1/2 phosphorylation. Roles of ERK1 and ERK2 in LTA-induced SP-A expression were not determined in this study but will be validated using RNA interference in our next study. There is growing evidence that the ERK signaling pathway, which contributes to regulating inflammatory events [33]. Therefore, LTA regulates SP-A expression in alveolar type II epithelial cells in the course of eliciting ERK1/2 phosphorylation and subsequent activation of the transcription factor, NF-κB.

ERK activation is mediated by at least three different pathways: a Raf/MEK-dependent pathway, a PI3K/Raf-independent pathway that strongly activates MEK, and a third undetermined pathway that directly activates ERK proteins [34]. This study showed that LTA time-dependently increased levels of phosphorylated MEK1. Thus, one of the possible reasons explaining why LTA stimulates ERK1/2 activation is the increase in MEK1 phosphorylation. MAPK-regulating signals place this family of protein kinases in an apparently linear signaling cascade downstream of growth factor receptors, adaptor proteins, guanine-nucleotide exchange factors, Ras, Raf, and MEK [19]. The present study demonstrates that LTA can induce SP-A expression via MEK-dependent activation of the protein kinase ERK1/2-signaling pathway.


Conclusions

In summary, we used an alveolar epithelial cell model to study the immunomodulatory responses of LTA. Our results revealed that LTA can induce inflammatory responses in alveolar epithelial A549 cells by means of enhancing SP-A mRNA and protein syntheses. Moreover, the signal-transducing mechanisms of LTA-caused regulation of SP-A expression arise through the cascade phosphorylations of MEK1 and ERK1/2. In succession, LTA increased NF-κB expression and translocation. LTA-induced SP-A production in alveolar type II epithelial cells may indicate the status of gram-positive bacteria-caused septic shock and acute lung injury. More molecular pathways should be investigated and proven in the future. However, there are certain limitations of this study, including the use of A549 cells, which are derived from human lung carcinoma. The effects of LTA on A549 cells may differ from those on normal alveolar epithelial cells. Thus, we will perform a translational study to evaluate the effects of LTA on alveolar epithelial cells of animals with acute lung injury.


Abbreviations

ALI: Acute lung injury; ERK1/2: Extracellular signal-regulated kinase 1/2; IL: Interleukin; LPS: Lipopolysaccharide; LTA: Lipoteichoic acid; NF-κB: Nuclear factor-κB; MAPKs: Mitogen-activated protein kinases; MEK1: Mitogen-activated/extracellular signal-regulated kinase kinase 1; PCNA: Proliferating cell nuclear antigen; SDS-PAGE: Sodium dodecylsulfate polyacrylamide gel electrophoresis; SP-A: Surfactant protein-A; TLR2: Toll-like receptor 2; TNF-α: Tumor necrosis factor-α.


Competing interests

The authors declare that they have no competing interests.


Authors’ contributions

FLL, CYC, and RMC visualized experimental design. YTT and HLT refined the experimental approach. TGC did the statistical analysis. TLC had significant intellectual input into the development of this work, and added to the Discussion. All authors reviewed data and results, and had significant input into the writing of the final manuscript. All authors read and approved the final manuscript.


Acknowledgments

This study was supported by the Department of Health, Taipei City Government (10101-10-007), the Department of Health (DOH101-TD-C-111-008), and the National Science Council (NSC 100-2314-B-038-010-MY3 (2/3) Taipei, Taiwan.


References
von Aulock S,Morath S,Hareng L,Knapp S,van Kessel KP,van Strijp JA,Hartung T,Lipoteichoic acid from Staphylococcus aureus is a potent stimulus for neutrophil recruitmentImmunobiologyYear: 200320841342210.1078/0171-2985-0028514748514
Cohen J,The immunopathogenesis of sepsisNatureYear: 200242088589110.1038/nature0132612490963
Chuang CY,Chen TG,Tai YT,Chen TL,Lin YH,Tsai CH,Chen RM,Toll-like receptor 2-mediated sequential activation of MyD88 and MAPKs contributes to lipopolysaccharide-induced sp-a gene expression in human alveolar epithelial cellsImmunobiologyYear: 201121670771410.1016/j.imbio.2010.10.00921112663
Linder A,Soehnlein O,Akesson P,Roles of heparin-binding protein in bacterial infectionsJ Innate ImmunYear: 2010243143810.1159/00031485320505311
Laupland KB,Kirkpatrick AW,Delaney A,Polyclonal intravenous immunoglobulin for the treatment of severe sepsis and septic shock in critically ill adults: a systematic review and meta-analysisCrit Care MedYear: 2007352686269210.1097/01.CCM.0000295312.13466.1C18074465
Legrand M,Klijn E,Payen D,Ince C,The response of the host microcirculation to bacterial sepsis: does the pathogen matter?J Mol MedYear: 20108812713310.1007/s00109-009-0585-620119709
Rooney SA,Regulation of surfactant secretionComp Biochem Physiol A: Mol Integr PhysiolYear: 200112923324310.1016/S1095-6433(01)00320-811369548
Epaud R,Ikegami M,Whitsett JA,Jobe AH,Weaver TE,Akinbi HT,Surfactant protein B inhibits endotoxin-induced lung inflammationAm J Respir Cell Mol BiolYear: 20032837337810.1165/rcmb.2002-0071OC12594064
Raychaudhuri B,Abraham S,Bonfield TL,Malur A,Deb A,DiDonato JA,Kavuru MS,Thomassen MJ,Surfactant blocks lipopolysaccharide signaling by inhibiting both mitogen-activated protein and IkappaB kinases in human alveolar macrophagesAm J Respir Cell Mol BiolYear: 20043022823210.1165/rcmb.2003-0263OC12920056
Gunther A,Ruppert C,Schmidt R,Markart P,Grimminger F,Walmrath D,Seeger W,Surfactant alteration and replacement in acute respiratory distress syndromeRespir ResYear: 2001235336410.1186/rr8611737935
Chuang CY,Chen TL,Chen RM,Molecular mechanisms of lipopolysaccharide caused induction of surfactant protein-A gene expression in human alveolar epithelial A549 cellsToxicol LettYear: 200919113213910.1016/j.toxlet.2009.08.01519712733
Wang JE,Dahle MK,McDonald M,Foster SJ,Aasen AO,Thiemermann C,Peptidoglycan and lipoteichoic acid in gram-positive bacterial sepsis: receptors, signal transduction, biological effects, and synergismShockYear: 20032040241410.1097/01.shk.0000092268.01859.0d14560103
Chuang CY,Chen TL,Cherng YG,Tai YT,Chen TG,Chen RM,Lipopolysaccharide induces apoptotic insults to human alveolar epithelial A549 cells through reactive oxygen species-mediated activation of an intrinsic mitochondrion-dependent pathwayArch ToxicolYear: 20118520921810.1007/s00204-010-0585-x20848084
Lemjabbar H,Basbaum C,Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cellsNat MedYear: 20028414610.1038/nm0102-4111786905
Leemans JC,Heikens M,van Kessel KP,Florquin S,van der Poll T,Lipoteichoic acid and peptidoglycan from Staphylococcus aureus synergistically induce neutrophil influx into the lungs of miceClin Diagn Lab ImmunolYear: 20031095095312965932
Chang HC,Lin KH,Tai YT,Chen JT,Chen RM,Lipoteichoic acid-induced TNF-α and IL-6 gene expressions and oxidative stress production in macrophages are suppressed by ketamine through downregulating toll-like receptor 2-mediated activation of ERK1/2 and NF-κBShockYear: 20103348549219823118
Greenfield EM,Beidelschies MA,Tatro JM,Goldberg VM,Hise AG,Bacterial pathogen-associated molecular patterns stimulate biological activity of orthopaedic wear particles by activating cognate Toll-like receptorsJ Biol ChemYear: 2010285323783238410.1074/jbc.M110.13689520729214
Chiu WT,Lin YL,Chou CW,Chen RM,Propofol inhibits lipoteichoic acid-induced iNOS gene expression in macrophages possibly through downregulation of toll-like receptor 2-mediated activation of Raf-MEK1/2-ERK1/2-IKK-NFκBChem-Biol InteractYear: 200918143043910.1016/j.cbi.2009.06.01119573522
Gild ML,Bullock M,Robinson BG,Clifton-Bligh R,Multikinase inhibitors: a new option for the treatment of thyroid cancerNat Rev EndocrinolYear: 2011761762410.1038/nrendo.2011.14121862995
Wu TT,Chen TL,Loon WS,Tai YT,Cherng YG,Chen RM,Lipopolysaccharide stimulates syntheses of toll-like receptor 2 and surfactant protein-A in human alveolar epithelial A549 cells through upregulating phosphorylation of MEK1 and ERK1/2 and sequential activation of NF-κBCytokineYear: 201155404710.1016/j.cyto.2011.03.00521474333
You L,Kruse FE,Bacher S,Schmitz ML,Lipoteichoic acid selectively induces the ERK signaling pathway in the corneaInvest Ophth Vis SciYear: 20024322722277
Chang HC,Chen TL,Chen RM,Interruption of hepatocyte cytoskeletons by ketamine occurs through suppression of calcium mobilization and mitochondrial functionDrug Metab DiposYear: 200937243110.1124/dmd.108.023325
Lotz S,Aga E,Wilde I,van Zandbergen G,Hartung T,Solbach W,Laskay T,Highly purified lipoteichoic acid activates neutrophil granulocytes and delays their spontaneous apoptosis via CD14 and TLR2J Leukoc BiolYear: 20047546747714673018
Morath S,Geyer A,Hartung T,Structure–function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureusJ Exp MedYear: 200119339339710.1084/jem.193.3.39311157059
Schneider O,Michel U,Zysk G,Dubuis O,Nau R,Clinical outcome in pneumococcal meningitis correlates with CSF lipoteichoic acid concentrationsNeurologyYear: 1999531584158710.1212/WNL.53.7.158410534274
Palaniyar N,Nadesalingam J,Reid KB,Pulmonary innate immune proteins and receptors that interact with gram-positive bacterial ligandsImmunobiologyYear: 200220557559410.1078/0171-2985-0015612396017
Khubchandani KR,Snyder JM,Surfactant protein A (SP-A): the alveolus and beyondFASEB JYear: 200115596910.1096/fj.00-0318rev11149893
LeVine AM,Whitsett JA,Gwozdz JA,Richardson TR,Fisher JH,Burhans MS,Korfhagen TR,Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lungJ ImmunolYear: 20001653934394011034401
Schroder NW,Morath S,Alexander C,Hamann L,Hartung T,Zahringer U,Gobel UB,Weber JR,Schumann RR,Lipoteichoic acid of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor-2, lipopolysaccharide-binding protein, and CD14, whereas TLR-4 and MD-2 are not involvedJ Biol ChemYear: 2003278155871559410.1074/jbc.M21282920012594207
Dichtl W,Nilsson L,Goncalves I,Ares MP,Banfi C,Calara F,Hamsten A,Eriksson P,Nilsson J,Very low density lipoprotein activates nuclear factor-kappa B in endothelial cellsCirc ResYear: 1999841085109410.1161/01.RES.84.9.108510325246
Lacasa D,Taleb S,Keophiphath M,Miranville A,Clement K,Macrophage secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytesEndocrinologyYear: 200714886887717082259
Lin CH,Kuan IH,Lee HM,Lee WS,Sheu JR,Ho YS,Wang CH,Kuo HP,Induction of cyclooxygenase-2 protein by lipoteichoic acid from Staphylococcus aureus in human pulmonary epithelial cells: involvement of a nuclear factor-κB-dependent pathwayBrit J PharmacolYear: 200113454355210.1038/sj.bjp.070429011588108
Bates ME,Green VL,Bertics PJ,ERK1 and ERK2 activation by chemotactic factors in human eosinophils is interleukin 5-dependent and contributes to leukotriene C(4) biosynthesisJ Biol ChemYear: 2000275109681097510.1074/jbc.275.15.1096810753897
Pizon V,Baldacci G,Rap1A protein interferes with various MAP kinase activating pathways in skeletal myogenic cellsOncogeneYear: 2000196074608110.1038/sj.onc.120398411146560

Figures

[Figure ID: F1]
Figure 1 

Effects of lipoteichoic acid (LTA) on the production of surfactant protein(SP)-A. A549 cells were exposed to 30 μg/ml LTA for 1, 6, and 24 h (A). Cellular proteins were prepared for the immunoblotting analyses. Amounts of SP-A were immunodetected (A, top pane). β-Actin was detected as the internal standard (bottom panel). These protein bands were quantified and analyzed (B). Each value represents the mean ± SEM for n = 6. An asterisk (*) indicates that a value significantly differed from the control groups, p < 0.05. AU, arbitrary unit.



[Figure ID: F2]
Figure 2 

Effects of lipoteichoic acid (LTA) on induction of surfactant protein(SP)-A mRNA. A549 cells were exposed to 30 μg/ml LTA for 1, 6, and 24 h. In addition, A549 cells were pretreated with BAY 11–7082 (BAY), an inhibitor of NF-κB activation, for 1 h and then exposed to LTA for another 24 h. mRNA was prepared for real-time PCR analyses of SP-A mRNA and β-actin mRNA. Each value represents the mean ± SEM for n = 3. Symbols * and # indicate that the value significantly (p < 0.05) differed from the respective control and LTA-treated group, respectively.



[Figure ID: F3]
Figure 3 

Effects of lipoteichoic acid (LTA) on the expression of the transcription factor, nuclear factor (NF)-κB. A549 cells were exposed to 30 μg/ml LTA for 1, 6, and 24 h. Levels of cytosolic NF-κB p65 (cNF-κB) were immunodetected (A, top panel). β-Actin was detected as the internal standard (bottom panel). These protein bands were quantified and analyzed (B). Each value represents the mean ± SEM for n = 6. An asterisk (*) indicates that a value significantly differed from the control groups, p < 0.05. AU, arbitrary unit.



[Figure ID: F4]
Figure 4 

Effects of lipoteichoic acid (LTA) on translocation of the transcription factor, nuclear factor (NF)-κB, from the cytoplasm to nuclei. A549 cells were exposed to 30 μg/ml LTA for 1, 6, and 24 h. Amounts of nuclear NF-κB p65 (nNF-κB) were immunodetected (A, top panel). Proliferating cell nuclear antigen (PCNA) was detected as the internal standard (bottom panel). These protein bands were quantified and analyzed (B). Each value represents the mean ± SEM for n = 6. An asterisk (*) indicates that a value significantly differed from the control groups, p < 0.05. AU, arbitrary unit.



[Figure ID: F5]
Figure 5 

Effects of lipoteichoic acid (LTA) on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2. A549 cells were exposed to 30 μg/ml LTA for 1, 6, and 24 h. Phosphorylated ERK1/2 (p-ERK1/2) were immunodetected (A, top panel). ERK2 was detected as the internal standard (bottom panel). These immunorelated protein bands were quantified and analyzed (B). Each value represents the mean ± SEM for n = 6. An asterisk (*) indicates that a value significantly differed from the control group, p < 0.05. AU, arbitrary unit.



[Figure ID: F6]
Figure 6 

Effects of lipoteichoic acid (LTA) on the phosphorylation of mitogen-activated/extracellular signal-regulated kinase kinase (MEK)1. A549 cells were exposed to 30 μg/ml LTA for 1, 6, and 24 h. Phosphorylated MEK1 (p-MEK1) was immunodetected (A, top panel). ERK2 was detected as the internal standard (bottom panel). These immunorelated protein bands were quantified and analyzed (B). Each value represents the mean ± SEM for n = 6. An asterisk (*) indicates that a value significantly differed from the control group, p < 0.05. AU, arbitrary unit.



Article Categories:
  • Research

Keywords: Lipoteichoic acid, Alveolar epithelial cells, Surfactant protein-A, MEK/ERK/NF-κB.

Previous Document:  Secretome analysis of chondroitin sulfate-treated chondrocytes reveals its anti-angiogenic, anti-inf...
Next Document:  Use of a chemically induced-colon carcinogenesis-prone Apc-mutant rat in a chemotherapeutic bioassay...