Document Detail


Leachate recirculation between alternating aged refuse bioreactors and its effect on refuse decomposition.
MedLine Citation:
PMID:  24645462     Owner:  NLM     Status:  In-Process    
Abstract/OtherAbstract:
In a sequencing batch bioreactor landfill system which combined a fresh and an aged refuse bioreactor, blockage occurred frequently in the aged refuse bioreactor during the treatment of leachate from the fresh refuse bioreactor. To overcome this problem, another aged refuse bioreactor was added, when blockage occurred, the two aged refuse bioreactor operated alternatively. A fresh refuse bioreactor F combined with two alternating aged refuse bioreactors A1 and A2 was called alternate recirculation process (ARP) in this study. The bioreactor system was operated in three stages, and the three bioreactors were exposed to air to facilitate surface re-aeration. The effect of the ARP on the accelerated degradation of fresh refuse was compared before and after blockage occurs in A1. The results indicated that ARP can improve the leachate production rate. The average daily net production rates of leachate in Stages 2 and 3 were approximately 2.1 and 1.6 mL (kgrefuse d)(-1), respectively, which exceeded that of Stage 1 (1.3 mL (kg refuse d)(-1)). The chemical oxygen demand and NH3-N concentrations of the leachate from Stage 1 are 1000 and 25mgL(-1) after 2.1 and 2.7 y, respectively. For Stages 2 and 3, these concentrations reach approximately after 0.877 and 1.3 y. Faster refuse settlement was observed in Stages 2 and 3, with an average daily settlement of approximately 0.11%, as compared with Stage 1 (approximately 0.099%). ARP can accelerate the biodegradation of the fresh refuse and overcome the problem of the blockage in the aged refuse reactor.
Authors:
Xiaojie Sun; Yingjie Sun; Youcai Zhao; Ya-Nan Wang
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Environmental technology     Volume:  35     ISSN:  0959-3330     ISO Abbreviation:  Environ Technol     Publication Date:    2014 Mar-Apr
Date Detail:
Created Date:  2014-03-20     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9884939     Medline TA:  Environ Technol     Country:  England    
Other Details:
Languages:  eng     Pagination:  799-807     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Trichloroethylene oxidation performance in sodium percarbonate (SPC)/Fe2+ system.
Next Document:  Effect of different plant species on nutrient removal and rhizospheric microorganisms distribution i...