Document Detail

Laser patterning of conductive gold micronanostructures from nanodots.
MedLine Citation:
PMID:  23044631     Owner:  NLM     Status:  Publisher    
Gold nanodots were used as the precursory material to form micronanopatterns under pinpoint scanning by a tightly focused femtosecond laser beam. Different from the widely reported metal ions photoreduction mechanism, here gradient force in an optical trap generated around the laser focus is considered as the major mechanism for particle accumulation (focusing). It has been proven to be an effective method for gold micronanostructure fabrication, and the electronic resistivity of the resulting metals reached as high as 5.5 × 10(-8) Ω m, only twice that of the bulk material (2.4 × 10(-8) Ω m). This merit makes it a novel free interconnection technology for micronanodevice fabrication.
Bin-Bin Xu; Ran Zhang; Huan Wang; Xue-Qing Liu; Lei Wang; Zhuo-Chen Ma; Qi-Dai Chen; Xin-Ze Xiao; Bing Han; Hong-Bo Sun
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-9
Journal Detail:
Title:  Nanoscale     Volume:  -     ISSN:  2040-3372     ISO Abbreviation:  Nanoscale     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-9     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101525249     Medline TA:  Nanoscale     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  The Roles of Identity Formation and Moral Identity in College Student Mental Health, Health-risk Beh...
Next Document:  Comparing work productivity in obesity and binge eating.