Document Detail


Large deforming buoyant embolus passing through a stenotic common carotid artery: A computational simulation.
MedLine Citation:
PMID:  22365500     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Arterial embolism is responsible for the death of lots of people who suffers from heart diseases. The major risk of embolism in upper limbs is that the ruptured particles are brought into the brain, thus stimulating neurological symptoms or causing the stroke. We presented a computational model using fluid-structure interactions (FSI) to investigate the physical motion of a blood clot inside the human common carotid artery. We simulated transportation of a buoyant embolus in an unsteady flow within a finite length tube having stenosis. Effects of stenosis severity and embolus size on arterial hemodynamics were investigated. To fulfill realistic nonlinear property of a blood clot, a rubber/foam model was used. The arbitrary Lagrangian-Eulerian formulation (ALE) and adaptive mesh method were used inside fluid domain to capture the large structural interfacial movements. The problem was solved by simultaneous solution of the fluid and the structure equations. Stress distribution and deformation of the clot were analyzed and hence, the regions of the embolus prone to lysis were localized. The maximum magnitude of arterial wall shear stress during embolism occurred at a short distance proximal to the throat of the stenosis. Through embolism, arterial maximum wall shear stress is more sensitive to stenosis severity than the embolus size whereas role of embolus size is more significant than the effect of stenosis severity on spatial and temporal gradients of wall shear stress downstream of the stenosis and on probability of clot lysis due to clot stresses while passing through the stenosis.
Authors:
Bahman Vahidi; Nasser Fatouraee
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-2-24
Journal Detail:
Title:  Journal of biomechanics     Volume:  -     ISSN:  1873-2380     ISO Abbreviation:  -     Publication Date:  2012 Feb 
Date Detail:
Created Date:  2012-2-27     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0157375     Medline TA:  J Biomech     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Elsevier Ltd. All rights reserved.
Affiliation:
Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Which diameter and angle rule provides optimal flow patterns in a coronary bifurcation?
Next Document:  Quantitative analysis of exogenous IGF-1 administration of intervertebral disc through intradiscal i...