Document Detail

Lack of association between gene polymorphisms of Angiotensin converting enzyme, Nod-like receptor 1, Toll-like receptor 4, FAS/FASL and the presence of Helicobacter pylori-induced premalignant gastric lesions and gastric cancer in Caucasians.
Jump to Full Text
MedLine Citation:
PMID:  21864388     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: Several polymorphisms of genes involved in the immunological recognition of Helicobacter pylori and regulating apoptosis and proliferation have been linked to gastric carcinogenesis, however reported data are partially conflicting. The aim of our study was to evaluate potential associations between the presence of gastric cancer (GC) and high risk atrophic gastritis (HRAG) and polymorphisms of genes encoding Angiotensin converting enzyme (ACE), Nod-like receptor 1 (NOD1), Toll-like receptor 4 (TLR4) and FAS/FASL.
METHODS: Gene polymorphisms were analyzed in 574 subjects (GC: n = 114; HRAG: n = 222, controls: n = 238) of Caucasian origin. ACE I/D (rs4646994), NOD1 796G>A (rs5743336), TLR4 3725G>C (rs11536889), FAS 1377G>A (rs2234767), FAS 670A>G (rs1800682) and FASL 844T>C (rs763110) were genotyped by different PCR approaches and restriction fragment length polymorphism analysis.
RESULTS: Frequencies of genotypes in our study are similar to the data reported on subjects of Caucasian ethnicity. There was a tendency for NOD1 796G/G genotype to be associated with increased risk of HRAG (62.4% vs. 54.5% in controls, p = 0.082). FAS 670G/G genotype was more frequent in HRAG when compared to controls, 23.9% and 17.2% respectively, however it failed to reach significance level (p = 0.077). We did not find any significant associations for all polymorphisms in relation to GC or HRAG. NOD1 796G>A and TLR4 3725G>C gene polymorphisms were also not associated with Helicobacter pylori infection.
CONCLUSIONS: ACE, NOD1, TRL4 and FAS/FASL gene polymorphisms are not linked with gastric carcinogenesis in Caucasians, and therefore they should not be considered as potential biomarkers for identifying individuals with higher risk for GC.
Authors:
Juozas Kupcinskas; Thomas Wex; Jan Bornschein; Michael Selgrad; Marcis Leja; Elona Juozaityte; Gediminas Kiudelis; Laimas Jonaitis; Peter Malfertheiner
Related Documents :
8049098 - Genetic approaches to study legionella pneumophila pathogenicity.
22027028 - The molecular epidemiology of parasite infections: tools and applications.
21982798 - Genetic diversity in the merozoite surface protein 1 and 2 genes of plasmodium falcipar...
21868258 - Scn1a mutational analysis in korean patients with dravet syndrome.
22439148 - Genetic variants in the adipoq gene and the risk of metabolic syndrome: a case-control ...
8049098 - Genetic approaches to study legionella pneumophila pathogenicity.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2011-08-24
Journal Detail:
Title:  BMC medical genetics     Volume:  12     ISSN:  1471-2350     ISO Abbreviation:  BMC Med. Genet.     Publication Date:  2011  
Date Detail:
Created Date:  2011-09-06     Completed Date:  2011-10-26     Revised Date:  2013-06-27    
Medline Journal Info:
Nlm Unique ID:  100968552     Medline TA:  BMC Med Genet     Country:  England    
Other Details:
Languages:  eng     Pagination:  112     Citation Subset:  IM    
Affiliation:
Department of Gastroenterology, Lithuanian University of Health Sciences, Eiveniu 2, 50009 Kaunas, Lithuania.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Adult
Aged
Aged, 80 and over
Alleles
Antigens, CD95 / genetics
European Continental Ancestry Group / genetics*
Fas Ligand Protein / genetics
Female
Gastritis, Atrophic / genetics*,  microbiology
Genotype
Helicobacter Infections / complications*
Helicobacter pylori*
Humans
Male
Middle Aged
Nod1 Signaling Adaptor Protein / genetics
Peptidyl-Dipeptidase A / genetics
Polymorphism, Genetic*
Precancerous Conditions / genetics*
Risk Factors
Stomach Neoplasms / ethnology,  genetics*,  microbiology
Toll-Like Receptor 4 / genetics
Chemical
Reg. No./Substance:
0/Antigens, CD95; 0/Fas Ligand Protein; 0/NOD1 protein, human; 0/Nod1 Signaling Adaptor Protein; 0/Toll-Like Receptor 4; EC 3.4.15.1/Peptidyl-Dipeptidase A
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): BMC Med Genet
ISSN: 1471-2350
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2011 Kupcinskas et al; licensee BioMed Central Ltd.
open-access:
Received Day: 7 Month: 6 Year: 2011
Accepted Day: 24 Month: 8 Year: 2011
collection publication date: Year: 2011
Electronic publication date: Day: 24 Month: 8 Year: 2011
Volume: 12First Page: 112 Last Page: 112
ID: 3166912
Publisher Id: 1471-2350-12-112
PubMed Id: 21864388
DOI: 10.1186/1471-2350-12-112

Lack of association between gene polymorphisms of Angiotensin converting enzyme, Nod-like receptor 1, Toll-like receptor 4, FAS/FASL and the presence of Helicobacter pylori-induced premalignant gastric lesions and gastric cancer in Caucasians
Juozas Kupcinskas1 Email: j_kupcinskas@yahoo.com
Thomas Wex2 Email: thomas.wex@med.ovgu.de
Jan Bornschein2 Email: jan.bornschein@med.ovgu.de
Michael Selgrad2 Email: michael.selgrad@med.ovgu.de
Marcis Leja3 Email: cei@latnet.lv
Elona Juozaityte4 Email: editaijuodzbalienei@yahoo.com
Gediminas Kiudelis1 Email: gedikiud@takas.lt
Laimas Jonaitis1 Email: laimasj@takas.lt
Peter Malfertheiner2 Email: peter.malfertheiner@medizin.uni-magdeburg.de
1Department of Gastroenterology, Lithuanian University of Health Sciences, Eiveniu 2, 50009 Kaunas, Lithuania
2Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
3Faculty of Medicine, University of Latvia, Digestive Diseases Center, Hospital Lizeners, 6 Linezera iela, LV1006 Riga, Latvia
4Department of Oncology, Lithuanian University of Health Sciences, Eiveniu 2, 50009 Kaunas, Lithuania

Background

Based on the current paradigm, gastric carcinogenesis is considered as multistep process involving complex interplay between Helicobacter pylori (H. pylori) infection, environmental and host genetic factors [1]. In gastric carcinogenesis two distinct pathways have been suggested for intestinal and diffuse type of gastric cancer (GC) (1). Correa et al. [2] demonstrated that H. pylori infection induces chronic inflammation of the gastric mucosa, leading to atrophic gastritis (AG) and intestinal metaplasia (IM), which are regarded as essential predisposing factors in intestinal-type GC development. Many researchers have shown a close relationship between H. pylori not only for intestinal-type GC, but also for diffuse-type GC [3,4]. Furthermore, although AG and IM are considered as obligatory predisposing factors in intestinal-type GC, the accumulating evidence suggests that AG and IM are at least partially associated with GC of the diffuse-type as well [3]. Up to date, no molecular screening methods are available for sporadic GC, therefore pathogenetic mechanisms involved in different stages of gastric carcinogenesis need to be further elucidated to allow identification of individuals with increased risk for GC. Recent studies have revealed several genetic polymorphisms related to immune-recognition of H. pylori, cell proliferation, and apoptosis pathways that were linked with premalignant gastric conditions and GC, but further research is needed to establish their role in gastric carcinogenesis [5].

Angiotensin I-converting enzyme (ACE) is expressed by different cell types [6] and generates Angiotensin II, which is a key effector in renin-angiotensin system. Recent reports provided evidence that Angiotensin II is involved in the regulation of cell proliferation, angiogenesis and inflammation through the Angiotensin II type 1 receptors, which are expressed on tumor and endothelial cells [7-9]. Insertion (I) or deletion (D) polymorphism of ACE gene was shown to have functional relevance, since the carriers of D allele have higher ACE activity [10]. ACE I/D polymorphism was linked with early development and spread of GC [11], but the studies report null association with the overall risk for GC [12,13]. ACE I/D polymorphism was not linked with gastric atrophy in Asian subjects [14]. There are however no reports that evaluate the role ACE I/D polymorphism in premalignant gastric conditions in Caucasians and studies addressing the role of ACE I/D polymorphisms in gastric carcinogenesis are limited.

Nucleotide-binding oligomerisation domain 1 (NOD1) is a member of the Nod-like receptors, which is expressed in the cytoplasm of antigen presenting cells and gastric epithelial cells and is involved in recognition of gram-negative bacteria [15]. It is known that stimulation of gastric epithelial cells with NOD1 ligands leads to production of proinflammatory cytokines [16,17] and NOD1 participates in host defense against mucosal infection with H. pylori infection [17,18]. Recently NOD1 was found to respond to peptidoglycan delivered by H. pylori cagPAI [19]. Given the significant role of H. pylori in gastric carcinogenesis, it is hypothesized that genetic variations in gene encoding NOD1 receptor could be related to different outcomes. Gene polymorphism 796G>A of NOD1 has been linked with peptic ulcer disease in H. pylori-positive patients [20] and a significant association with very high odds ratios has been recently reported for the risk of premalignant lesions in the antrum of the stomach [21]. Up to date, the data on NOD1 796G>A gene polymorphism remain very scarce and there are no reports concerning the role of this polymorphism in patients with GC.

Another important receptor for the recognition of H. pylori is Toll-like receptor 4 (TLR4), a member of Toll-like receptors family. TLR4 recognizes lipopolysaccharide of gram-negative bacteria, and it is thought to interact with macrophage/monocyte in response to H. pylori infection [22]. Expression of TLR4 by gastric epithelium is upregulated in H. pylori-induced gastritis compared to non-inflamed gastric mucosa [23]. Single nucleotide polymorphisms (SNPs) of TLR4 gene are thought to disrupt the normal structure of the extracellular region of the TLR4 and are therefore hypothesized to decrease responsiveness to lipopolysaccharide through alterations in binding. TLR4 896A>G polymorphism was found to be associated with higher risk of H. pylori-induced GC and its precursors [24]. Recently, a novel polymorphism in TLR4 gene 3725G>C (rs11536889) with functional relevance was identified [25] and linked with severe gastric atrophy in Asian population [26]. This is however the only report on TLR4 3725G>C polymorphism and the potential link with premalignant gastric lesions or GC has not been evaluated yet.

The role of apoptosis in tumor genesis has been well established [27]. The FAS and FASL system plays an important role in regulating apoptotic cell death, initiating the extrinsic pathway of apoptosis [28]. Decreased expression levels of FAS and FASL are associated with different malignancies as well as the progression of gastric carcinoma [29]. Several single nucleotide polymorphisms (SNPs) FAS 1377G>A (rs2234767), FAS 670A>G (rs1800682) and FASL 844T>C (rs763110) were shown to affect gene expression [30,31]. Liu et al. showed an association between these FAS/FASL gene polymorphisms and higher risk of GC [32], while other studies reported null associations [33,34]. These polymorphisms were also associated with the risk of atrophic gastritis [35], however the data published on the association with risk for GC are still scarce and there are no reports on the role FAS/FASL polymorphisms with respect to GC in Caucasians.

Given the pathophysiological significance of ACE, NOD1, TLR4, FAS and FASL genes in gastric carcinogenesis, it is intriguing to assess the role of these polymorphisms for the development of GC and H. pylori-associated premalignant gastric lesions. Therefore, the aim of our study was to evaluate potential links between the presence of GC or HRAG and ACE I/D, NOD1 796G>A, TLR4 3725G>C, FAS 1377G>A, FAS 670A>G and FASL 844T>C gene polymorphisms in 114 patients with GC, 222 patients with HRAG and 238 controls of Caucasian origin. This study provides further insights in the puzzle of genetic susceptibility for GC and its precursors.


Methods
Study population

Subjects included in the study came from our previous research groups on IL-1B, IL-1RN and NOD2 gene polymorphisms [36-38]. Patients were recruited at three gastroenterological centers in Germany, Lithuania and Latvia. In Germany, patients with GC, HRAG and healthy controls were recruited from the Department of Gastroenterology of the Otto-von-Guericke University Magdeburg between 1998 and 2008. Patients with HRAG were included from the Out-patient Department, and from a clinical study aimed at the long-term follow up of H. pylori infection. Controls were recruited from clinical studies with healthy volunteers and subjects from the Out-patient Department with dyspeptic symptoms.

In Lithuania and Latvia, patients with HRAG and controls were included from the Out-patient Departments of University Hospitals in Kaunas and Riga. All the individuals were referred for upper endoscopy because of dyspeptic symptoms during the period of 2005-2006.

The inclusion criteria of HRAG and controls were no history of malignancy, gastrointestinal disease or surgery. GC was determined by histology. From all participants, DNA for genotyping was available. In total, 346 individuals (114 GC, 140 HRAG, 92 controls) from Germany and 228 individuals from Lithuania and Latvia (82 HRAG, 146 controls) were included. All patients were of Caucasian ethnicity. The study was approved by the Ethics Committees of the OvG University Magdeburg, Lithuanian University of Health Sciences and University of Latvia, and informed consent to participate in the study was obtained from all subjects included.

Histological analysis and H. pylori status

Scoring of atrophic gastritis and intestinal metaplasia was done according to the modified Sydney classification [39]. Histological evaluation for GC type was carried out according to the Laurén classification [40]. HRAG was defined as pan-gastritis (similar inflammatory scores in antrum and corpus), corpus-predominant gastritis with or without the presence of gastric atrophy, and intestinal metaplasia either in antrum or corpus as described by Uemura et al. and Meining et al. [41,42]. H. pylori status was determined by testing for anti-H. pylori IgG antibodies in sera.

Genotyping

Genomic DNA was extracted from peripheral blood mononuclear cells using the QIAamp DNA blood kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions.

ACE I/D

The ACE I/D genotype (rs4646994) was determined by PCR using primers: forward 5'-CTGGAGACCACTCCCATCCTTTCT-3' and reverse, 5'-GATGTGGCCATCACATTCGTCAGAT-3'. An initial 15 minute denaturation at 95° was followed by 40 cycles of 1 min at 64°C, 1 min at 72°C, and 35 s at 95.5°C. Amplified ACE gene polymorphisms were separated on 1.0% agarose gels, and visualized by ethidium bromide staining. D and I alleles were determined by the presence of 190 or 490 bp fragments (Figure 1).

NOD1 796G>A

The NOD1 796G>A SNP (rs5743336) was analyzed by PCR restriction fragment length polymorphism analysis (PCR-RFLP) with the following primers: forward 5'-TGA GAC CAT CTT CAT CCT GG-3'; reverse 5'-CTT CCC ACT GAG CAG GTT G-3'. An initial 15 minute denaturation at 95° was followed by 40 cycles of 1 min at 64°C, 1 min at 72°C, and 35 s at 95.5°C. For RFLP analysis, the PCR products were digested with AvaI restriction enzyme (Fermentas, Vilnius, Lithuania) at 37°C overnight, studied by gel electrophoresis on a 2% agarose gel and visualized with ethidium bromide staining. The presence of G allele was indicated by cleavage of the 379 bp amplified PCR product to yield fragments of 209 bp and 170 bp (Figure 1).

TLR4 3725G>C

The TLR4 3725G>C SNP (rs11536889) was genotyped using confronting two-pair primers PCR (PCR-CTPP). The primers were F1: TTT GAT GGA CCT CTG AAT CTC, R1: TTT TCT CAA TGA TAA CAT CCA CTC, F2: CTT GAC CAC ATT TTG GGA AC, and R2: TTC CAA TTT CTC TAT ATC CTT GAT GA. An initial 15 minute denaturation at 95° was followed by 40 cycles of 1 min at 64°C, 1 min at 72°C, and 35 s at 95.5°C. The amplified DNA was visualized on a 2% agarose gel with ethidium bromide staining. The amplified DNA was 184 bp for G allele, 256 bp for C allele, and 397 bp for common band (Figure 1).

FAS 1377G>A, FAS 670A>G, FASL 844T>C

SNPs of FAS 1377G>A (rs2234767), FAS 670A>G (rs1800682) and FASL 844T>C (rs763110) were genotyped by using predesigned TaqMan assays with a BioRad CFX96™ real-time cycler, in accordance with the manufacturer's instructions (Bio-Rad Laboratories Inc, Hercules, USA). Thermal cycling conditions for polymerase chain reaction (PCR) were, first, denaturing at 95°C for 10 min, followed by 40 cycles of 95.5°C for 15 s and 60°C for 1 min (Figure 2).

Statistical analysis

Concordance of genotype frequencies with the Hardy-Weinberg equilibrium was tested by online software http://ihg.gsf.de/cgi-bin/hw/hwa1.pl. Age is shown as means and standard deviations, and was compared using ANOVA and unpaired Student's t-test. Categorical data (e.g. gender, distribution of genotypes or alleles) are presented as frequencies; comparisons were performed using the Chi-square test. Association between HRAG and GC with gene polymorphisms were calculated using unconditional multiple logistic regression analysis and expressed as odds ratios (OR) with 95% confidence intervals (CI). The ORs presented in the study were not adjusted for confounding factors. The relative risks for mutations were studied using recessive and dominant model that led to a comparison between wildtype+heterozygous vs. homozygous and wildtype vs. heterozygous+homozygous, respectively. Statistical analysis was done using statistical software SPSS Version 16.0 (SPSS Inc., Chicago, Illinois, USA).


Results

The characteristics of the study groups are presented in Table 1. German and Baltic study groups did not differ significantly according to the allele distribution (data not shown), therefore the respective groups with HRAG as well as controls were combined and further analyzed together. Patients differed significantly according to age and gender distribution. Male made up for almost 2/3 of patients with GC, while both other groups demonstrated inverse findings. Furthermore, controls were significantly younger (6 or 9 years) than both other groups (Table 1). Notably, serological H. pylori status were similar among the three groups, the proportion of H. pylori-positive subjects was between 59-62%, and did not differ significantly.

All individuals were successfully genotyped for ACE I/D, FAS 1377G>A, FAS 670A>G and FASL 844T>C polymorphisms. Four subjects were not genotyped for NOD1 796G>A polymorphism and five subjects for TLR4 3725G>C polymorphism. The genotype distributions for all six polymorphisms in control, HRAG and GC groups were similar to those expected for Hardy-Weinberg equilibrium (data not shown). The genotype frequencies of ACE I/D, NOD1 796G>A, TLR4 3725G>C, FAS 1377G>A, FAS 670A>G and FASL 844T>C among different groups are presented in Table 2. Analysis of genotypes and allele frequencies showed similar distribution between GC, HRAG, and controls. We did not find any significant association between all polymorphisms included in our study with respect to GC and HRAG. We also performed an analysis comparing control group with a risk group (combined GC and HRAG subjects); however it did not reveal significant differences in genotype frequencies (Additional file 1, Table S1).

We observed a tendency for NOD1 796G/G genotype for increased risk of atrophic gastritis (62.4% vs. 54.5% in controls, p = 0.082). Similarly, NOD1 allele G was more common in patients with HRAG (77.4%) when compared to controls (72.4%), but without significance (p = 0.081). FAS 670G/G genotype was more frequent in HRAG group when compared to controls, 23.9% and 17.2% respectively, however it failed to reach significance level (p = 0.077). The FAS 670G/A genotype was less frequent in HRAG (45.5%) when compared to controls (53.4%), but the difference was not statistically significant (p = 0.091).

We also analyzed the distribution of genotypes with respect to different histological GC types (Additional file 2, Table S2). Histological type of GC was intestinal, diffuse and mixed type in 47, 47 and 20 patients, respectively. In order to compare intestinal and diffuse type GC, mixed tumor types were excluded from subanalysis. ACE D/D polymorphism was found to be less prevalent in diffuse type GC, when compared to controls (27.7% vs. 12.8%, respectively; OR-0.38, 95% CI 0.15-0.94, p = 0.030). There were no differences between different histological subtypes of GC with respect to the other gene polymorphisms. We also analyzed the seropositivity status of H. pylori with respect to TLR4 3725G>C and NOD1 796G>A polymorphisms, but no significant differences in genotype distribution were observed (Table 3).


Discussion

Overall, in our study ACE I/D, NOD1 796G>A, TLR4 3725G>C, FAS 1377G>A, FAS 670A>G and FASL 844T>C gene polymorphisms were not associated with the presence of GC or HRAG. Here, we evaluated six genetic polymorphisms related to the immune-recognition of H. pylori, proliferation and apoptosis that were previously described to be associated with increased risk of GC or premalignant gastric lesions in different case-control studies; however reported data are partially conflicting or just based on one study [11-14,20,21,26,33-35]. Since ACE, NOD1, TLR4, FAS, and FASL have been shown to be involved in gastric carcinogenesis pathways, we expected that the polymorphisms of genes encoding these proteins could be related to GC.

When analyzing ACE I/D polymorphism we hypothesized that carriers of D allele, which was associated with higher ACE activity [10], could have an increased risk of GC. Ebert et al. [11] identified an association of ACE D/D genotype with the development of early GC, and the same group of researchers showed that this genotype is related to the number of metastatic lymph nodes in GC, but not to the overall risk for GC in German subjects [12]. A Japanese study did not find an association between ACE I/D polymorphism and suseptibility to GC [13]. Another Asian study [14] reported that ACE I/D polymorphism carried a higher risk for GC with odds ratio of 1.59, however the same study did not find significant association of ACE polymorhisms with gastric atrophy. ACE I/D genotype frequencies in our study are in line with previous reports [12]. We did not observe significant link between ACE I/D polymorphisms and the risk for GC or HRAG.

Considering the relationship between H. pylori-induced chronic inflammation and carcinogenesis in the stomach it was tempting to speculate that genetic variation in NOD1 receptor, which is involved in bacterial recognition, could be associated with H. pylori-induced diseases. NOD1 796A/A homozygous mutants were linked with increased risk for peptic ulcer disease in a Hungarian study [20]; however they did not find a significant association with atrophic gastritis. A recent study from Turkey [21] found that subjects with NOD1 796A/A genotype had a significantly increased risk for gastric atrophy and antral intestinal metaplasia with very high odds ratios, 34.2 and 39.7 respectively. Such a strong association reported by Kara et al. [21] urged us to evaluate the possible association of this polymorphism in our subjects with GC and HRAG. The genotype frequencies of NOD1 796G>A in this study correspond to previous reports [20,21]. In our study we observed a tendency for NOD1 796G/G genotype and allele G for increased risk for atrophic gastritis; however the difference did not reach statistical significance. We did not observe an association between NOD1 796G>A gene polymorphism and HRAG or GC. H. pylori seropositivity status was also not linked with NOD1 796G>A genotypes.

Polymorphisms of TLR4 gene are hypothesized to decrease responsiveness to gram-negative bacteria lipopolysaccharide through alterations in binding. In a recent study TLR4 3725G>C polymorphism was indentified as a risk factor for severe gastric atrophy in H. pylori sero-positive Japanese subjects with OR of 1.43 and 1.47 for G/C and C/C genotypes, respectively [26], however in the same study this polymorphism was not associated with the risk for GC. Another study showed a combined effect of TLR4 3725G>C and miR-146a G>C gene polymorphisms for risk of gastric atrophy, but not for GC [43]. Our data on TLR4 3725G>C genotype frequencies are comparable to the reported frequencies in leukemia study on Caucasian population [44]. We did not find significant association between TLR4 3725G>C genotypes and HRAG or GC. There was also no association between H. pylori seropositivity and TLR4 3725G>C genotypes.

There are only few studies that have evaluated the risk for GC in relation to FAS and FASL gene polymorphisms. Reported results are conflicting and cover Asian subjects only. In two Chinese case-control studies FAS and FASL genotypes had no significant associations with risk of GC [33,34]. Another study from China suggested that FASL 844T/T or T/C and FAS 1377A/A genotypes could be a risk factor for GC in combination with other gene polymorphisms [32]. Hsu et al. [35] have reported that FAS 1377 allele A was a protective factor for developing intestinal metaplasia in the antrum with odds ratio 0.3, while carrying the FASL 844 allele C was a risk factor for developing gastric atrophy in the corpus with OR of 9.4. The distribution of FAS and FASL genotypes in our cohorts corresponds to the frequencies reported on Caucasian subjects in a lung cancer study [45], but we could not provide any evidence that FAS and FASL gene polymorphism are linked with risk for GC or HRAG in Caucasians.

In the present study we evaluated potential links between the risk for GC and several carcinogenesis-related gene polymorphisms that have been rarely or not described, especially in Caucasian population. We did not find significant associations between the presence of GC or HRAG and ACE I/D, NOD1 796G>A, TLR4 3725G>C, FAS 1377G>A, 670A>G and FASL 844T>C gene polymorphisms. We also analyzed the genotype frequencies with respect to different histological GC types. ACE D/D genotype was less prevalent in diffuse-type GC than in controls, however the corresponding subgroups of intestinal and diffuse-type GC are rather small are therefore firm conclusions can not be drawn. Because the studies on ACE I/D, NOD1 796G>A, TLR4 3725G>C, FAS 1377G>A, 670A>G and FASL 844T>C polymorphisms remain limited, evaluation of the association with GC and premalignant gastric lesions requires additional research. Since the strength of the association may depend on the studied population, larger studies of different ethnic groups with different genetic profiles are required. The differences in current data on these polymorphisms may result from study design, H. pylori prevalence, and different histological subtypes of GC. In this study there was no difference in H. pylori positivity among GC, HRAG and control groups. The possible explanation for these findings could be higher prevalence of H. pylori in Baltic countries, when compared to Germany. HRAG and control groups were selected both in Germany and Baltic countries, while GC subjects were recruited only in the German centre, thus possibly affected the H. pylori status within the groups. Alterations in various genes, including oncogenes, tumor-suppressor genes, proinflammatory genes, bacterial recognition and cell-adhesion-related genes have been studied in gastric carcinogenesis [5,24,46]. In previous studies we also evaluated the role of IL-1B, IL-1RN and NOD2 gene polymorphisms with respect to risks for GC; however no significant associations were identified [36-38]. Some reports suggested that host genetic factors determine the severity of gastric damage and the eventual clinical outcome of H. pylori infection [47,48]. These findings however have not been transferred to daily clinical practice, and therefore applicable predisposing genetic factors remain still to be determined.


Conclusions

The study shows that the polymorphisms of ACE, NOD1, TLR4, FAS and FASL genes are not associated with H. pylori-induced premalignant gastric conditions and GC in subjects of Caucasian ethnicity. Based on the data available now, the investigated polymorphisms are not applicable for identifying individuals with higher risk for developing GC.


Abbreviations

GC: gastric cancer; HRAG: high risk atrophic gastritis; OR: odds ratio; CI: confidence interval; ACE: Angiotensin converting enzyme; NOD1: Nod-like receptor 1; TLR4: Toll-like receptor 4; H. pylori: Helicobacter pylori; AG: atrophic gastritis; IM: intestinal metaplasia; RFLP: restriction fragment length polymorphism analysis; SNPs: single nucleotide polymorphisms.


Competing interests

The authors declare that they have no competing interests.


Authors' contributions

JK performed acquisition of data, SNP genotyping, statistical analysis, drafted the manuscript; TW was involved in study design, coordination, drafting and final revision of the manuscript; JB, MS, EJ, GK, LJ performed acquisition of data; ML was involved in study design and data collection; PM was involved in study design, and final revision of the manuscript. All authors read and approved the final manuscript.


Pre-publication history

The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2350/12/112/prepub


Supplementary Material Additional file 1

Table S1. Distribution of ACE, NOD1, TLR4, FAS and FASL gene polymorphisms in control and risk group (gastric cancer and high risk atrophic gastritis patients).


Click here for additional data file (1471-2350-12-112-S1.DOC)

Additional file 2

Table S2. Distribution of ACE, NOD1, TLR4, FAS and FASL gene polymorphisms in controls, intestinal and diffuse type gastric cancer groups.


Click here for additional data file (1471-2350-12-112-S2.DOC)


Acknowledgements

We thank Ursula Stolz and Marion Holley for their support in this study. The study was partially co-funded by Ministries of Education and Research in Latvia and Lithuania, by Science Foundation of Lithuanian University of Health Sciences and State Research Program in Health in Latvia. The study was funded by the "LOM-Program" of the Medical Faculty of the Otto-von-Guericke University Magdeburg.


References
Bornschein J,Kandulski A,Selgrad M,Malfertheiner P,From gastric inflammation to gastric cancerDig DisYear: 20102860961410.1159/00032006121088411
Correa P,A human model of gastric carcinogenesisCancer ResYear: 198848355435603288329
Bornschein J,Selgrad M,Warnecke M,Kuester D,Wex T,Malfertheiner P,H. pylori infection is a key risk factor for proximal gastric cancerDig Dis SciYear: 2010553124313110.1007/s10620-010-1351-x20668939
Komoto K,Haruma K,Kamada T,Tanaka S,Yoshihara M,Sumii K,Kajiyama G,Talley NJ,Helicobacter pylori infection and gastric neoplasia: correlations with histological gastritis and tumor histologyAm J GastroenterolYear: 1998931271127610.1111/j.1572-0241.1998.00408.x9707050
Hishida A,Matsuo K,Goto Y,Hamajima N,Genetic predisposition to Helicobacter pylori-induced gastric precancerous conditionsWorld J Gastrointest OncolYear: 2010236937910.4251/wjgo.v2.i10.36921160888
Bauvois B,Transmembrane proteases in cell growth and invasion: new contributors to angiogenesis?OncogeneYear: 20042331732910.1038/sj.onc.120712414724562
Fujita M,Hayashi I,Yamashina S,Itoman M,Majima M,Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasisBiochem Biophys Res CommunYear: 200229444144710.1016/S0006-291X(02)00496-512051731
Uemura H,Ishiguro H,Nakaigawa N,Nagashima Y,Miyoshi Y,Fujinami K,Sakaguchi A,Kubota Y,Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: a possibility of tyrosine kinase inhibitor of growth factorMol Cancer TherYear: 200321139114714617787
Deshayes F,Nahmias C,Angiotensin receptors: a new role in cancer?Trends Endocrinol MetabYear: 20051629329910.1016/j.tem.2005.07.00916061390
Rigat B,Hubert C,Alhenc-Gelas F,Cambien F,Corvol P,Soubrier F,An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levelsJ Clin InvestYear: 1990861343134610.1172/JCI1148441976655
Ebert MP,Lendeckel U,Westphal S,Dierkes J,Glas J,Folwaczny C,Roessner A,Stolte M,Malfertheiner P,Rocken C,The angiotensin I-converting enzyme gene insertion/deletion polymorphism is linked to early gastric cancerCancer Epidemiol Biomarkers PrevYear: 2005142987298910.1158/1055-9965.EPI-05-041116365022
Röcken C,Röhl FW,Diebler E,Lendeckel U,Pross M,Carl-McGrath S,Ebert MP,The angiotensin II/angiotensin II receptor system correlates with nodal spread in intestinal type gastric cancerCancer Epidemiol Biomarkers PrevYear: 2007161206121210.1158/1055-9965.EPI-05-093417548686
Sugimoto M,Furuta T,Shirai N,Ikuma M,Sugimura H,Hishida A,Influences of chymase and angiotensin I-converting enzyme gene polymorphisms on gastric cancer risks in JapanCancer Epidemiol Biomarkers PrevYear: 2006151929193410.1158/1055-9965.EPI-06-033917035401
Goto Y,Ando T,Nishio K,Ishida Y,Kawai S,Goto H,Hamajima N,The ACE gene polymorphism is associated with the incidence of gastric cancer among H. pylori seropositive subjects with atrophic gastritisAsian Pac J Cancer PrevYear: 2005646446716435992
Strober W,Murray PJ,Kitani A,Watanabe T,Signalling pathways and molecular interactions of NOD1 and NOD2Nat Rev ImmunolYear: 2006692010.1038/nri174716493424
Kim JG,Lee SJ,Kagnoff MF,Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by toll-like receptorsInfect ImmunYear: 2004721487149510.1128/IAI.72.3.1487-1495.200414977954
Masumoto J,Yang K,Varambally S,Hasegawa M,Tomlins SA,Qiu S,Fujimoto Y,Kawasaki A,Foster SJ,Foster SJ,Horie Y,Mak TW,Núñez G,Chinnaiyan AM,Fukase K,Inohara N,Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivoJ Exp MedYear: 200620320321310.1084/jem.2005122916418393
Fukazawa A,Alonso C,Kurachi K,Gupta S,Lesser CF,McCormick BA,Reinecker HC,GEF-H1 mediated control of NOD1 dependent NF-kappaB activation by Shigella effectorsPLoS PathogYear: 20084e100022810.1371/journal.ppat.100022819043560
Viala J,Chaput C,Boneca IG,Cardona A,Girardin SE,Moran AP,Athman R,Mémet S,Huerre MR,Coyle AJ,DiStefano PS,Sansonetti PJ,Labigne A,Bertin J,Philpott DJ,Ferrero RL,Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity islandNat ImmunolYear: 200451166117410.1038/ni113115489856
Hofner P,Gyulai Z,Kiss ZF,Tiszai A,Tiszlavicz L,Toth G,Szoke D,Molnar B,Lonovics J,Tulassay Z,Mándi Y,Genetic polymorphisms of NOD1 and IL-8, but not polymorphisms of TLR4 genes, are associated with Helicobacter pylori-induced duodenal ulcer and gastritisHelicobacterYear: 20071212413110.1111/j.1523-5378.2007.00481.x17309748
Kara B,Akkiz H,Doran F,Bayram S,Erken E,Gumurdullu Y,Sandikci M,The significance of E266K polymorphism in the NOD1 gene on Helicobacter pylori infection: an effective force on pathogenesis?Clin Exp MedYear: 20101010711210.1007/s10238-009-0077-619882212
Maeda S,Akanuma M,Mitsuno Y,Hirata Y,Ogura K,Yoshida H,Shiratori Y,Omata M,Distinct mechanism of Helicobacter pylori-mediated NF-kappa B activation between gastric cancer cells and monocytic cellsJ Biol ChemYear: 2001276448564486410.1074/jbc.M10538120011546774
Schmausser B,Andrulis M,Endrich S,Lee SK,Josenhans C,Müller-Hermelink HK,Eck M,Expression and subcellular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infectionClin Exp ImmunolYear: 200413652152610.1111/j.1365-2249.2004.02464.x15147355
El-Omar EM,Ng MT,Hold GL,Polymorphisms in Toll-like receptor genes and risk of cancerOncogeneYear: 20082724425210.1038/sj.onc.121091218176606
Fukusaki T,Ohara N,Hara Y,Yoshimura A,Yoshiura K,Evidence for association between a Toll-like receptor 4 gene polymorphism and moderate/severe periodontitis in the Japanese populationJ Periodontal ResYear: 20074254154510.1111/j.1600-0765.2007.00979.x17956467
Hishida A,Matsuo K,Goto Y,Mitsuda Y,Hiraki A,Naito M,Wakai K,Tajima K,Hamajima N,Toll-like receptor 4 +3725 G/C polymorphism, Helicobacter pylori seropositivity, and the risk of gastric atrophy and gastric cancer in JapaneseHelicobacterYear: 200914475310.1111/j.1523-5378.2009.00659.x19191896
Zörnig M,Hueber A,Baum W,Evan G,Apoptosis regulators and their role in tumorigenesisBiochim Biophys ActaYear: 20011551F13711591448
Suda T,Takahashi T,Golstein P,Nagata S,Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor familyCellYear: 1993751169117810.1016/0092-8674(93)90326-L7505205
Takahama Y,Yamada Y,Emoto K,Fujimoto H,Takayama T,Ueno M,Uchida H,Hirao S,Mizuno T,Nakajima Y,The prognostic significance of overexpression of the decoy receptor for Fas ligand (DcR3) in patients with gastric carcinomasGastric CancerYear: 20025616810.1007/s10120020001112111580
Kanemitsu S,Ihara K,Saifddin A,Otsuka T,Takeuchi T,Nagayama J,Kuwano M,Hara T,A functional polymorphism in fas (CD95/APO-1) gene promoter associated with systemic lupus erythematosusJ RheumatolYear: 2002291183118812064832
Sibley K,Rollinson S,Allan JM,Smith AG,Law GR,Roddam PL,Skibola CF,Smith MT,Morgan GJ,Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemiaCancer ResYear: 2003634327433012907599
Liu L,Wu C,Wang Y,Zhong R,Wang F,Zhang X,Duan S,Lou J,Yu D,Tan W,Yuan J,Wu T,Nie S,Miao X,Lin D,Association of candidate genetic variations with gastric cardia adenocarcinoma in Chinese population: a multiple interaction analysisCarcinogenesisYear: 20113233634210.1093/carcin/bgq26421148629
Wang M,Wu D,Tan M,Gong W,Xue H,Shen H,Zhang Z,FAS and FAS ligand polymorphisms in the promoter regions and risk of gastric cancer in Southern ChinaBiochem GenetYear: 20094755956810.1007/s10528-009-9264-019565204
Zhou RM,Wang N,Chen ZF,Duan YN,Sun DL,Li Y,Polymorphisms in promoter region of FAS and FASL gene and risk of cardia gastric adenocarcinomaJ Gastroenterol HepatolYear: 20102555556110.1111/j.1440-1746.2009.06116.x20074157
Hsu PI,Lu PJ,Wang EM,Ger LP,Lo GH,Tsay FW,Chen TA,Yang HB,Chen HC,Lin WS,Lai KH,Polymorphisms of death pathway genes FAS and FASL and risk of premalignant gastric lesionsAnticancer ResYear: 2008289710318383830
Wex T,Ebert MP,Kropf S,Dierkes J,Schüttler K,Röcken C,Höcker M,Malfertheiner P,Gene polymorphisms of the NOD-2/CARD-15 gene and the risk of gastric cancer in GermanyAnticancer ResYear: 20082875776218507017
Wex T,Leodolter A,Bornschein J,Kuester D,Kähne T,Kropf S,Albrecht C,Naumann M,Roessner A,Malfertheiner P,Interleukin 1 beta (IL1B) gene polymorphisms are not associated with gastric carcinogenesis in GermanyAnticancer ResYear: 20103050551120332462
Kupcinskas L,Wex T,Kupcinskas J,Leja M,Ivanauskas A,Jonaitis LV,Janciauskas D,Kiudelis G,Funka K,Sudraba A,Chiu HM,Lin JT,Malfertheiner P,Interleukin-1B and interleukin-1 receptor antagonist gene polymorphisms are not associated with premalignant gastric conditions: a combined haplotype analysisEur J Gastroenterol HepatolYear: 2010221189119510.1097/MEG.0b013e32833cf3d520631624
Dixon MF,Genta RM,Yardley JH,Correa P,Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994Am J Surg PatholYear: 199620116111818827022
Lauren P,The two histological main types of gastric carcinoma: diffuse and so called intestinal-type carcinoma. An attempt at a histo-clinical classificationActa Pathol Microbiol ScandYear: 196564314914320675
Uemura N,Okamoto S,Yamamoto S,Matsumura N,Yamaguchi S,Yamakido M,Taniyama K,Sasaki N,Schlemper RJ,Helicobacter pylori infection and the development of gastric cancerN Engl J MedYear: 200134578478910.1056/NEJMoa00199911556297
Meining A,Bayerdörffer E,Müller P,Miehlke S,Lehn N,Hölzel D,Hatz R,Stolte M,Gastric carcinoma risk index in patients infected with Helicobacter pyloriVirchows ArchYear: 199843231131410.1007/s0042800501719565339
Hishida A,Matsuo K,Goto Y,Naito M,Wakai K,Tajima K,Hamajima N,Combined effect of miR-146a rs2910164 G/C polymorphism and Toll-like receptor 4 +3725 G/C polymorphism on the risk of severe gastric atrophy in JapaneseDig Dis SciYear: 2011561131113710.1007/s10620-010-1376-120721625
Miedema KG,Te Poele EM,Tissing WJ,Postma DS,Koppelman GH,de Pagter AP,Kamps WA,Alizadeh BZ,Boezen HM,de Bont ES,Association of polymorphisms in the TLR4 gene with the risk of developing neutropenia in children with leukemiaLeukemiaYear: 201125995100010.1038/leu.2011.2721403649
Ter-Minassian M,Zhai R,Asomaning K,Su L,Zhou W,Liu G,Heist RS,Lynch TJ,Wain JC,Lin X,De Vivo I,Christiani DC,Apoptosis gene polymorphisms, age, smoking and the risk of non-small cell lung cancerCarcinogenesisYear: 2008292147215210.1093/carcin/bgn20518757527
Perri F,Piepoli A,Bonvicini C,Gentile A,Quitadamo M,Di Candia M,Cotugno R,Cattaneo F,Zagari MR,Ricciardiello L,et al. Cytokine gene polymorphisms in gastric cancer patients from two Italian areas at high and low cancer prevalenceCytokineYear: 20053029330210.1016/j.cyto.2005.01.01115927855
El-Omar EM,Carrington M,Chow WH,McColl KE,Bream JH,Young HA,Herrera J,Lissowska J,Yuan CC,Rothman N,Lanyon G,Martin M,Fraumeni JF Jr,Rabkin CS,Interleukin-1 polymorphisms associated with increased risk of gastric cancerNatureYear: 200040439840210.1038/3500608110746728
Machado JC,Figueiredo C,Canedo P,Pharoah P,Carvalho R,Nabais S,Castro Alves C,Campos ML,Van Doorn LJ,Caldas C,Seruca R,Carneiro F,Sobrinho-Simões M,A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinomaGastroenterologyYear: 200312536437110.1016/S0016-5085(03)00899-012891537

Figures

[Figure ID: F1]
Figure 1 

Gene polymorphisms were determined by DNA fragment migration profile on agarose gel and visualized by ethidium bromide staining: A. ACE I/D genotypes: D or I alleles were identified by the presence of 190 or 490 bp fragments B. NOD1 796G>A genotypes: wild-type DNA is visible as a double-band 209 bp and 170 bp (GG); the mutated DNA is visible as a single 379 bp band (AA); heterozygotes give three bands (GA); C. TLR4 3725G>C genotypes: wild-type is visible as a double-band 184 and 397 bp (GG), mutated DNA is visible as 256 and 397 bp bands (CC); heterozygotes give three bands 184, 256, and 397 bp bands (GC). Lane L is a 100 bp molecular weight marker (HyperLadder IV, Bioline GmbH, Berlin, Germany).



[Figure ID: F2]
Figure 2 

Gene polymorphisms of FAS 1377G>A, FAS 670A>G and FASL 844T>C were determined using Taqman genotyping assays with Biorad CFX96™ real-time cycler (Bio-Rad Laboratories Inc, Hercules, USA).



Tables
[TableWrap ID: T1] Table 1 

Characteristics of groups


Controls
(n = 238)
GC
(n = 114)
HRAG
(n = 222)
ANOVA (Age)
Chi-squared test
p value
Age
 Mean ± SD 56.9 ± 16.1 65.51 ± 13.4 63.4 ± 10.4 < 0.001
Gender
 Male 79 (33.2%) 77 (67.5%) 87 (39.2%) < 0.001
 Female 159 (66.8%) 37 (32.5%) 135 (60.8%)
H. pylori
 Positive 141 (59.2%) 70 (61.4%) 133 (59.9%) 0.928
 Negative 97 (40.8%) 44 (38.6%) 89 (40.1%)

Statistical analysis was performed globally for all three groups.

GC, gastric cancer; HRAG, high risk atrophic gastritis


[TableWrap ID: T2] Table 2 

Association of ACE, NOD1, TLR4, FAS and FASL gene polymorphisms with gastric cancer and high risk atrophic gastritis


Genotypes Controls (n = 238) GC (n = 114) HRAG (n = 222)

n (%) n (%) OR (95% CI) p n (%) OR (95% CI) p
ACE I/D
I/I 62 (26.1) 27 (23.7) 0.88 (0.52-1.48) 0.632 62 (27.9) 1.10 (0.73-1.66) 0.650
I/D 110 (46.2) 59 (51.8) 1.25 (0.79-1.95) 0.331 108 (48.6) 1.10 (0.76-1.59) 0.602
D/D 66 (27.7) 28 (24.6) 0.85 (0.51-1.42) 0.529 52 (23.4) 0.79 (0.52-1.21) 0.290
Allele I 234 (49.2) 113 (49.6) 1.02 (0.74-1.39) 0.921 232 (52.3) 1.13 (0.87-1.47) 0.348
Allele D 242 (50.8) 115 (50.4) 0.98 (0.72-1.35) 0.921 212 (47.7) 0.88 (0.68-1.15) 0.348
NOD1 796G>A
G/G 129 (54.4) 61 (54.5) 1.00 (0.64-1.57) 0.995 138 (62.4) 1.39 (0.96-2.02) 0.082
G/A 85 (35.9) 40 (35.7) 0.99 (0.62-1.59) 1.000 66 (29.9) 0.76 (0.52-1.13) 0.172
A/A 23 (9.7) 11 (9.8) 1.01 (0.48-2.16) 0.973 17 (7.7) 0.78 (0.40-1.49) 0.446
Allele G 343 (72.4) 162 (72.3) 0.99 (0.70-1.42) 0.991 342 (77.4) 1.31 (0.97-1.76) 0.081
Allele A 131 (27.6) 62 (27.7) 1.00 (0.70-1.73) 0.991 100 (22.6) 0.77 (0.57-1.03) 0.081
TLR4 3725G>C
G/G 190 (80.5) 90 (79.6) 0.95 (0.54-1.66) 0.849 181 (82.3) 1.12 (0.70-1.80) 0.629
G/C 41 (17.4) 21 (18.6) 1.09 (0.61-1.94) 0.782 33 (15.0) 0.84 (0.51-1.38) 0.492
C/C 5 (2.1) 2 (1.8) 0.83 (0.16-4.36) 0.832 6 (2.7) 1.29 (0.39-4.31) 0.672
Allele G 421 (89.2) 201 (88.9) 0.97 (0.59-1.62) 0.919 395 (89.8) 1.06 (0.69-1.62) 0.776
Allele C 51 (10.8) 25 (11.1) 1.03 (0.62-1.71) 0.919 45 (10.2) 0.94 (0.62-1.44) 0.776
FAS 1377G>A
G/G 197 (82.8) 95 (83.3) 1.04 (0.57-1.88) 0.895 178 (80.2) 0.84 (0.52-1.35) 0.471
G/A 40 (16.8) 18 (15.8) 0.92 (0.51-1.70) 0.809 41 (18.5) 1.12 (0.69-1.81) 0.640
A/A 1 (0.4) 1 (0.9) 2.09 (0.13-33.8) 0.593 3 (1.4) 3.2 (0.33-31.4) 0.282
Allele G 434 (91.2) 208 (91.2) 1.00 (0.57-1.75) 0.981 397 (89.4) 0.82 (0.52-1.27) 0.366
Allele A 42 (8.8) 20 (8.8) 0.99 (0.56-1.73) 0.981 47 (10.6) 1.22 (0.79-1.90) 0.366
FAS 670A>G
A/A 70 (29.4) 31 (27.2) 0.89 (0.54-1.47) 0.666 68 (30.6) 1.06 (0.71-1.57) 0.775
A/G 127 (53.4) 62 (54.4) 1.04 (0.66-1.63) 0.856 101 (45.5) 0.72 (0.51-1.05) 0.091
G/G 41 (17.2) 21 (18.4) 1.08 (0.60-1.94) 0.783 53 (23.9) 1.50 (0.95-2.39) 0.077
Allele A 267 (56.1) 124 (54.4) 0.93 (0.68-1.28) 0.699 237 (53.4) 0.89 (0.69-1.16) 0.408
Allele G 209 (43.9) 104 (45.6) 1.07 (0.78-1.47) 0.699 207 (46.6) 1.12 (0.86-1.44) 0.408
FASL 844T>C
T/T 124 (52.1) 55 (48.2) 0.86 (0.55-1.34) 0.498 108 (48.6) 0.87 (0.60-1.25) 0.459
T/C 94 (39.5) 52 (45.6) 1.28 (0.81-2.01) 0.275 91 (41.0) 1.06 (0.73-1.54) 0.743
C/C 20 (8.4) 7 (6.1) 0.71 (0.29-1.73) 0.455 23 (10.4) 1.26 (0.67-2.36) 0.471
Allele T 342 (71.8) 162 (71.1) 0.96 (0.67-1.36) 0.826 307 (69.1) 0.87 (0.66-1.17) 0.368
Allele C 134 (28.2) 66 (28.9) 1.04 (0.73-1.47) 0.826 137 (30.9) 1.14 (0.86-1.51) 0.368

GC, gastric cancer; HRAG, high risk atrophic gastritis, CI, confidence interval; OR, odds ratio The ORs were calculated comparing each genotype vs. the other two genotypes, the first line for each gene polymorphism represents the dominant model and third line represents the recessive model.


[TableWrap ID: T3] Table 3 

Distribution of NOD1 and TLR4 gene polymorphisms in Helicobacter pylori positive and negative subjects


Genotypes Hp negative Hp positive
n (%) n (%) OR (95% CI) p

NOD1 796G>A
G/G 133 (57.8) 195 (57.4) 0.98 (0.69-1.37) 0.910
G/A 75 (32.6) 116 (34.1) 1.07 (0.75-1.52) 0.708
A/A 22 (9.60) 29 (8.50) 0.88 (0.49-1.57) 0.670
Allele G 341 (74.1) 506 (74.4) 1.01 (0.77-1.33) 0.915
Allele A 119 (25.9) 174 (25.6) 0.98 (0.75-1.29) 0.915
TLR4 3725G>C
G/G 182 (79.1) 279 (82.3) 1.22 (0.80-1.87) 0.343
G/C 44 (19.1) 51 (15.0) 0.74 (0.48-1.16) 0.199
C/C 4 (1.8) 9 (2.7) 1.54 (0.46-5.06) 0.549
Allele G 408 (88.7) 609 (89.8) 1.12 (0.76-1.64) 0.545
Allele C 52 (11.3) 69 (10.2) 0.88 (0.60-1.30) 0.545

Hp, Helicobacter pylori; OR, odds ratio

The ORs were calculated comparing each genotype vs. the other two genotypes, the first line for each gene polymorphism represents the dominant model and third line represents the recessive model.



Article Categories:
  • Research Article


Previous Document:  Lighting and perceptual cues: effects on gait measures of older adults at high and low risk for fall...
Next Document:  Prevalence of chronic kidney disease among people living with HIV/AIDS in Burundi: a cross-sectional...