Document Detail


Kinetic study of acetaminophen degradation by visible light photocatalysis.
MedLine Citation:
PMID:  24766590     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
In this work, a novel photocatalyst K3[Fe(CN)6]/TiO2 synthesized via a simple sol-gel method was utilized to degrade acetaminophen (ACT) under visible light with the use of blue and green LED lights. Parameters (medium pH, initial concentration of reactant, catalyst concentration, temperature, and number of blue LED lights) affecting photocatalytic degradation of ACT were also investigated. The experimental result showed that compared to commercially available Degussa P-25 (DP-25) photocatalyst, K3[Fe(CN)6]/TiO2 gave higher degradation efficiency and rate constant (kapp) of ACT. The degradation efficiency or kapp decreased with increasing initial ACT concentration and temperature, but increased with increased number of blue LED lamps. Additionally, kapp increased as initial pH was increased from 5.6 to 6.9, but decreased at a high alkaline condition (pH 8.3). Furthermore, the degradation efficiency and kapp of ACT increased as K3[Fe(CN)6]/TiO2 loading was increased to 1 g L(-1) but decreased and eventually leveled off at photocatalyst loading above this value. Photocatalytic degradation of ACT in K3[Fe(CN)6]/TiO2 catalyst system follows a pseudo-first-order kinetics. The Langmuir-Hinshelwood equation was also satisfactorily used to model the degradation of ACT in K3[Fe(CN)6]/TiO2 catalyst system indicated by a satisfactory linear correlation between 1/kapp and Co, with kini = 6.54 × 10(-4) mM/min and KACT = 17.27 mM(-1).
Authors:
Mary Jane N Gotostos; Chia-Chi Su; Mark Daniel G De Luna; Ming-Chun Lu
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering     Volume:  49     ISSN:  1532-4117     ISO Abbreviation:  J Environ Sci Health A Tox Hazard Subst Environ Eng     Publication Date:  2014 Jul 
Date Detail:
Created Date:  2014-04-28     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9812551     Medline TA:  J Environ Sci Health A Tox Hazard Subst Environ Eng     Country:  England    
Other Details:
Languages:  eng     Pagination:  892-9     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  A novel microextractor stick (polyaniline/zinc film/stainless steel) for polycyclic aromatic hydroca...
Next Document:  Temporal and spatial variations in PAH concentrations in the sediment from the Nilufer Creek in Burs...