Document Detail


JAABA: interactive machine learning for automatic annotation of animal behavior.
MedLine Citation:
PMID:  23202433     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
We present a machine learning-based system for automatically computing interpretable, quantitative measures of animal behavior. Through our interactive system, users encode their intuition about behavior by annotating a small set of video frames. These manual labels are converted into classifiers that can automatically annotate behaviors in screen-scale data sets. Our general-purpose system can create a variety of accurate individual and social behavior classifiers for different organisms, including mice and adult and larval Drosophila.
Authors:
Mayank Kabra; Alice A Robie; Marta Rivera-Alba; Steven Branson; Kristin Branson
Related Documents :
24434053 - "out of our control": living through cyclone yasi.
23082753 - Suicide attempts and suicide among marines: a decade of follow-up.
18952163 - Attachment avoidance predicts inflammatory responses to marital conflict.
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-12-02
Journal Detail:
Title:  Nature methods     Volume:  -     ISSN:  1548-7105     ISO Abbreviation:  Nat. Methods     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2012-12-3     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101215604     Medline TA:  Nat Methods     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
1] Howard Hughes Medical Institute, Janelia Farm Research Campus (HHMI JFRC), Ashburn, Virginia, USA. [2].
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Correcting pervasive errors in RNA crystallography through enumerative structure prediction.
Next Document:  Conversion of human fibroblasts to angioblast-like progenitor cells.