Document Detail

Isolation and functional characterization of a salt responsive transcriptional factor, LrbZIP from lotus root (Nelumbo nucifera Gaertn).
MedLine Citation:
PMID:  23288562     Owner:  NLM     Status:  Publisher    
Basic leucine zipper transcription factor (bZIP) is involved in signaling transduction for various stress responses. Here we reported a bZIP transcription factor (accession: JX887153) isolated from a salt-resistant lotus root using cDNA-AFLP approach with RT-PCR and RACE-PCR method. Full-length cDNA which consisted of a single open reading frame encoded a putative polypeptide of 488 amino acids. On the basis of 78, 76, and 75 % sequence similarity with the bZIPs from Medicago truncatula (XP_003596814.1), Carica papaya (ABS01351.1) and Arabidopsis thaliana (NP_563810.2), we designed it as LrbZIP. Semi quantitative RT-PCR results, performed on the total RNA extracted from tips of lotus root, showed that LrbZIP expression was increased with 250 mM NaCl treatment for 18 h. Effects of low temperature on the expression of LrbZIP was also studied, and its expression was significantly enhanced with a 4 °C treatment for 12 h. In addition, LrbZIP expression was strongly induced by treatment with exogenous 100 μM ABA. To evaluate its function across the species, tobacco (Nicotiana tabacum L.) was transformed with LrbZIP in a binary vector construct. Transgenic plants exhibited higher resistance as compared with the control according to the results of the root growth, chlorophyll content and electrolyte leakage when exposed to NaCl treatment. In addition, LrCDPK2, LrLEA, and TPP also showed enhanced expression in the transgenic plants. Overall, expression of LrbZIP was probably very important for salt-resistant lotus root to survive through salt stress.
Libao Cheng; Shuyan Li; Javeed Hussain; Xiaoyong Xu; Jingjing Yin; Yi Zhang; Xuehao Chen; Liangjun Li
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-4
Journal Detail:
Title:  Molecular biology reports     Volume:  -     ISSN:  1573-4978     ISO Abbreviation:  Mol. Biol. Rep.     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-4     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0403234     Medline TA:  Mol Biol Rep     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Copper-Catalyzed Addition Of Nucleophilic Silicon To Aldehydes.
Next Document:  The mechanism of increased postnatal heart rate and sinoatrial node pacemaker activity in mice.