Document Detail

Iodopsin.
Jump to Full Text
MedLine Citation:
PMID:  14367777     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
The iodopsin system found in the cones of the chicken retina is identical with the rhodopsin system in its carotenoids. It differs only in the protein-the opsin -with which carotenoid combines. The cone protein may be called photopsin to distinguish it from the scotopsins of the rods. Iodopsin bleaches in the light to a mixture of photopsin and all-trans retinene. The latter is reduced by alcohol dehydrogenase and cozymase to all-trans vitamin A(1). Iodopsin is resynthesized from photopsin and a cis isomer of vitamin A, neovitamin Ab or the corresponding neoretinene b, the same isomer that forms rhodopsin. The synthesis of iodopsin from photopsin and neoretinene b is a spontaneous reaction. A second cis retinene, isoretinene a, forms iso-iodopsin (lambda(max) 510 mmicro). The bleaching of iodopsin in moderate light is a first-order reaction (Bliss). The synthesis of iodopsin from neoretinene b and opsin is second-order, like that of rhodopsin, but is very much more rapid. At 10 degrees C. the velocity constant for iodopsin synthesis is 527 times that for rhodopsin synthesis. Whereas rhodopsin is reasonably stable in solution from pH 4-9, iodopsin is stable only at pH 5-7, and decays rapidly at more acid or alkaline reactions. The sulfhydryl poison, p-chloromercuribenzoate, blocks the synthesis of iodopsin, as of rhodopsin. It also bleaches iodopsin in concentrations which do not attack rhodopsin. Hydroxylamine also bleaches iodopsin, yet does not poison its synthesis. Hydroxylamine acts by competing with the opsins for retinene. It competes successfully with chicken, cattle, or frog scotopsin, and hence blocks rhodopsin synthesis; but it is less efficient than photopsin in trapping retinene, and hence does not block iodopsin synthesis. Though iodopsin has not yet been prepared in pure form, its absorption spectrum has been computed by two independent procedures. This exhibits an alpha-band with lambda(max) 562 mmicro, a minimum at about 435 mmicro, and a small beta-band in the near ultraviolet at about 370 mmicro. The low concentration of iodopsin in the cones explains to a first approximation their high threshold, and hence their status as organs of daylight vision. The relatively rapid synthesis of iodopsin compared with rhodopsin parallels the relatively rapid dark adaptation of cones compared with rods. A theoretical relation is derived which links the logarithm of the visual sensitivity with the concentration of visual pigment in the rods and cones. Plotted in these terms, the course of rod and cone dark adaptation resembles closely the synthesis of rhodopsin and iodopsin in solution. The spectral sensitivities of rod and cone vision, and hence the Purkinje phenomenon, have their source in the absorption spectra of rhodopsin and iodopsin. In the chicken, for which only rough spectral sensitivity measurements are available, this relation can be demonstrated only approximately. In the pigeon the scotopic sensitivity matches the spectrum of rhodopsin; but the photopic sensitivity is displaced toward the red, largely or wholly through the filtering action of the colored oil globules in the pigeon cones. In cats, guinea pigs, snakes, and frogs, in which no such colored ocular structures intervene, the scotopic and photopic sensitivities match quantitatively the absorption spectra of rhodopsin and iodopsin. In man the scotopic sensitivity matches the absorption spectrum of rhodopsin; but the photopic sensitivity, when not distorted by the yellow pigmentations of the lens and macula lutea, lies at shorter wave lengths than iodopsin. This discrepancy is expected, for the human photopic sensitivity represents a composite of at least three classes of cone concerned with color vision.
Authors:
G WALD; P K BROWN; P H SMITH
Related Documents :
25116257 - Comparison of paper- and web-based dietary records: a pilot study.
24483427 - Influence of stochastic perturbation of both action updating and strategy updating in m...
24348087 - A war over mental health professionalism: scientology versus psychiatry.
23414267 - The political battle for repeal: personal reflections from the frontlines.
25112257 - New species of pseudonannolene silvestri, 1895 from brazilian limestone caves with comm...
25116557 - Remembering herbert sulzbach and those who work for peace.
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  The Journal of general physiology     Volume:  38     ISSN:  0022-1295     ISO Abbreviation:  J. Gen. Physiol.     Publication Date:  1955 May 
Date Detail:
Created Date:  1955-12-01     Completed Date:  2003-05-01     Revised Date:  2010-09-20    
Medline Journal Info:
Nlm Unique ID:  2985110R     Medline TA:  J Gen Physiol     Country:  Not Available    
Other Details:
Languages:  eng     Pagination:  623-81     Citation Subset:  OM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Retina / physiology*
Rhodopsin*
Chemical
Reg. No./Substance:
9009-81-8/Rhodopsin
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): J Gen Physiol
ISSN: 0022-1295
ISSN: 1540-7748
Publisher: The Rockefeller University Press
Article Information
Download PDF
Copyright © Copyright, 1955, by The Rockefeller Institute for Medical Research
Received Day: 10 Month: 11 Year: 1954
Print publication date: Day: 20 Month: 5 Year: 1955
Volume: 38 Issue: 5
First Page: 623 Last Page: 681
ID: 2147498
PubMed Id: 14367777

IODOPSIN
George Wald
Paul K. Brown
Patricia H. Smith
From The Biological Laboratories of Harvard University, Cambridge


Article Categories:
  • Article


Previous Document:  A quantitative electrochemical theory of the electrolyte permeability of mosaic membranes composed o...
Next Document:  The effect of iodoacetate and other inhibitors on phage production and lysis in three phage systems.